C64DX SYSTEM SPECIFICATION

o Design Concepts

o Hardware Specifications

o Software Specifications

Requires ROM Version 0.9A.910228 or later.

COPYRIGHT 1991 COMMODORE BUSINESS MACNINES, INC.

ALL RIGHTS RESERVED.

INFORMATION CONTAINED HEREIN IS THE UNPUBLISHED AND CONFIDENTIAL

PROPERTY OF COMMODORE BUSINESS MACHINES, INC. USE, REPRODUCTION, OR

DISCLOSURE OF THIS INFORMATION WITHOUT THE PRIOR WRITTEN PERMISSION OF

COMMODORE IS PROHIBITED.

 CCCC 666 555555

C C 6 5

C 6 5

C 6 55555

C 66666 5 5

C 6 6 5

C 6 6 5

C C 6 6 5 5

 CCCC 6666 5555

Copyright 1991 Commodore Business Machines, Inc.

All Rights Reserved.

This documentation contains confidential, proprietary, and unpublished

information of Commodore Business Machines, Inc. The reproduction,

dissemination, disclosure or translation of this information to others

without the prior written consent of Commodore Business Machines, Inc.

is strictly prohibited.

Notice is hereby given that the works of authorship contained herein

are owned by Commodore Business Machines, Inc. pursuant to U.S.

Copyright Law, Title 17 U.S.C. 3101 et. seq.

This system specification reflects the latest information available at

this time. Updates will occur as the system evolves. Commodore

Business Machines, Inc. makes no warranties, expressed or implied with

regard to the information contained herein including the quality,

performance, merchantability, or fitness of this information or the

system as described.

This system specification contains the contributions of several people

including: Fred Bowen, Paul Lassa, Bill Gardei, and Victor Andrade.

Portions of the BASIC ROM code are Copyright 1977 Microsoft.

PPPP RRRR EEEE L I M M I N N A RRRR Y Y

P P R R E L I MM MM I NN N A A R R Y Y

PPPP RRRR EEE L I M M M I N N N AAAAA RRRR Y

P R R E L I M M I N NN A A R R Y

P R R EEEE LLLL I M M I N N A A R R Y

Revision 0.2 (pilot release) January 31, 1991

At this time, Pilot Production, the C65 system consists of either

revision 2A or 2B PCB, 4510R3, 4567R5 (PAL only), F011B/C FDC, and 018

DMAgic chips. There will be changes to all these chips before

Production Release.

This work is by:

 Fred Bowen System Software - C65

 Paul Lassa Hardware engineer - C65, DMagic

 Bill Gardei LSI engineer - 4567, FDC

 Victor Andrade LSI engineer - 4510

Included are contributions by contractors hired by Commodore for the

C65 project. These contributions include the DOS, Graphics, Audio, and

Memory management areas.

Several 4502 assembler systems are available:

 VAX, Amiga, and PC based BSO-compatible cross assemblers.

 PC based custom cross assembler by Memocom, compatible

 with Memocom 4502 emulator and Mem-ulator systems.

 C128-based BSO compatible cross assembler by Commodore.

Custom software support is available for the following logic

analyzers:

 Hewlett Packard HP655x A and B logic analyzers.

Table of Contents

1.0. Introduction

 1.1. System Concept

 1.2. System Overview

 1.3. System Components

 1.4. System Concerns

 1.4.1. C64 Compatibility

 1.4.1.1. Software

 1.4.1.2. Hardware

 1.4.2. 1581 DOS Compatibility

 1.4.3. Modes of Operation

 1.5. System Maps

 1.5.1. Composite System Memory Map

 1.5.2. C65 System Memory Map

 1.5.3. C65 System Memory Layout

 1.5.4. C65 I/O Memory Map

2.0. System Hardware

 2.1. Keyboard

 2.1.1. Keyboard Layout

 2.1.2. Keyboard Matrix

 2.2. External Ports & Form-Factor

 2.3. Microcontroller

 2.3.1. Description

 2.3.2. Configuration

 2.3.3. Functional Description

 2.3.3.1. Pin Description

 2.3.3.2. Timing Description

 2.3.3.3. Register Description

 2.3.4. Mapper

 2.3.5. Peripheral Control

 2.3.5.1. I/O Ports

 2.3.5.2. Handshaking

 2.3.5.3. Timers

 2.3.5.4. TOD Clocks

 2.3.5.5. Serial Ports

 2.3.5.6. Fast Serial Ports

 2.3.5.7. Interrupt Control

 2.3.5.8. Control Registers

 2.3.6. UART

 2.3.6.1. Control Registers

 2.3.6.2. Status Register

 2.3.6.3. Character Configuration

 2.3.6.4. Register Map

 2.3.7. CPU

 2.3.7.1. Introduction

 2.3.7.2. CPU Operation

 2.3.7.3. Interrupt Handling

 2.3.7.4. Addressing Modes

 2.3.7.5. Instruction Set

 2.3.7.6. Opcode Table

 2.4. Video Controller

 2.4.1. Description

 2.4.2. Configuration

 2.4.3. Functional Description

 2.4.4. Programming

 2.4.5. Registers

 2.5. Disk Controller

 2.5.1. Description

 2.5.2. Configuration

 2.5.3. Registers

 2.5.4. Functional Description

 2.5.5. Expansion port protocol

 2.5.6. Timing diagrams

 2.6. Expansion Disk Controller (option)

 2.6.1. Description

 2.6.2. Expansion port protocol

 2.7. DMAgic Controller

 2.7.1. Description

 2.7.2. Registers

 2.8. RAM Expansion Controller (option)

 2.8.1. Description

 2.9. Audio Controller

3.0. System Software

 3.1. BASIC 10.0

 3.1.1. Introduction

 3.1.2. List of Commands

 3.1.3. Command Descriptions

 3.1.4. Variables

 3.1.5. Operators

 3.1.6. Error Messages

 3.1.6.1. BASIC Error Messages

 3.1.6.2. DOS Error Messages

 3.2. Monitor

 3.2.1. Introduction

 3.2.2. Commands and Conventions

 3.2.3. Command Descriptions

 3.3. Editor

 3.3.1. Escape Sequences

 3.3.2. Control Characters

 3.4. Kernel

 3.4.1. Kernel Jump Table

 3.4.2. BASIC Jump Table

 3.4.3. Editor Jump Table

 3.4.4. Indirect Vectors

 3.4.5. Kernel Documentation

 3.4.6. BASIC Math Package Documentation

 3.4.7. I/O Devices

 3.5. DOS

 3.6. RS-232

4.0. Development Support

1.0. Introduction

This specification describes the requirements for a low-cost 8-bit

microcomputer system with excellent graphic capabilities.

1.1. System Concept

The C65 microcomputer is a low-cost, versatile, competitive product

designed for the international home computer and game market.

The C65 is well suited for first time computer buyers, and provides an

excellent upgrade path for owners of the commercially successful

C64. The C65 is composed of concepts inherent in the C64 and C128.

The purpose of the C65 is to modernize and revitalize the 10 year old

C64 market while still taking advantage of the developed base of C64

software. To accomplish this, the C65 will provide a C64 mode of

operation, offering a reasonable degree of C64 software compatibility

and a moderate degree of add-on hardware and peripheral compatibility.

Compatibility can be sacrificed when it impedes enhanced functionality

and expandability, much as the C64 sacrificed VIC-20 compatibility.

It is anticipated that the many features and capabilities of the new

C65 mode will quickly attract the attention of developers and

consumers alike, thereby revitalizing the low-end home computer

market. The C65 incorporates features that are normally found on

today's more expensive machines, continuing the Commodore tradition of

maximizing performance for the price. The C65 will provide many new

opportunities for third party software and hardware developers,

including telecommunications, video, instrument control (including

MIDI), and productivity as well as entertainment software.

1.2. System Overview

 o CPU -- Commodore CSG4510 running at 1.02 or 3.5 Mhz

 o New instructions, including Rockwell and GTE extensions

 o Memory Mapper supporting up to 1 Megabyte address space

 o R6511-type UART (3-wire RS-232) device, programmable baud

 rate (50-56K baud, MIDI-capable), parity, word size, sync

 and async. modes. XD/RD wire ORed/ANDed with user port.

 o Two CSG6526-type CIA devices, each with 2 I/O ports

 programmable TOD clocks, interval timers, interrupt control

 o Memory

 o RAM -- 128K bytes (DRAM)

 Externally expandable from additional 512K bytes to 4MB

 using dedicated RAM expansion port.

 o ROM -- 128K bytes

 C64 Kernel and BASIC 2.2

 C65 Kernel, Editor, BASIC 10.0, ML Monitor (like C128)

 DOS v10 (1581 subset)

 Multiple character sets: 40 and 80 column versions

 National keyboards/charsets for foreign language systems

 Externally expandable by conventional C64 ROM cartridges

 via cartridge/expansion port using C64 decodes.

 Externally expandable by additional 128K bytes or more

 via cartridge/expansion port using new system decodes.

 o DMA -- Custom DMAgic controller chip built-in

 Absolute address access to entire 8MB system map

 including I/O devices, both ROM & RAM expansion ports.

 List-based DMA structures can be chained together

 Copy (up,down,invert), Fill, Swap, Mix (boolean Minterms)

 Hold, Modulus (window), Interrupt, and Resume modes,

 Block operations from 1 byte to 64K bytes

 DRQ handshaking for I/O devices

 Built-in support for (optional) expansion RAM controller

 o Video -- Commodore CSG 4567 enhanced VIC chip

 o RGBA with sync on all colors or digital sync

 o Composite NTSC or PAL video, separate chroma/luma

 o Composite NTSC or PAL digital monochrome

 o RF TV output via NTSC or PAL modulator

 o Digital foreground/background control (genlock)

 o All original C64 video modes:

 40x25 standard character mode

 Extended background color mode

 320x200 bitmap mode

 Multi-color mode

 16 colors

 8 sprites, 24x21

 o 40 and 80 character columns by 25 rows:

 Color, blink, bold, inverse video, underline attributes

 o True bitplane graphics:

 320 x 200 x 256 (8-bitplane) non-interlaced

 640 x 200 x 16* (4-bitplane) non-interlaced

 1280 x 200 x 4* (2-bitplane) non-interlaced

 320 x 400 x 256 (8-bitplane) interlaced

 640 x 400 x 16* (4-bitplane) interlaced

 1280 x 400 x 4* (2-bitplane) interlaced

 *plus sprite and border colors

 o Color palettes:

 Standard 16-color C64 ROM palette

 Programmable 256-color RAM palette, with 16 intensity

 levels per primary color (yielding 4096 colors)

 o Horizontal and vertical screen positioning verniers

 o Display Address Translator (DAT) allows programmer to

 access bitplanes easily and directly.

 o Access to optional expansion RAM

 o Operates at either clock speed without blanking

 o Audio -- Commodore CSG8580 SID chips

 o Stereo SID chips:

 Total of 6 voices, 3 per channel

 Programmable ADSR envelope for each voice

 Filter, modulation, audio inputs, potentiometer

 Separate left/right volume, filter, modulation control

 o Disk, Printer support --

 o FDC custom MFM controller chip built in, with 512-byte

 buffer, sector or full track read/write/format, LED and

 motor control, copy protection.

 o Built-in 3.5" double sided, 1MB MFM capacity drive

 o Media & file system compatible with 1581 disk drive

 o Supports one additional "dumb" drive externally.

 o Standard CBM bus serial (all modes, about 4800 baud)

 o Fast serial bus (C65 mode only, about 20K baud)

 o Burst serial (C65 mode only, about 50K baud)

 o External ports --

 o 50-pin Cartridge/expansion port (ROM cartridges, etc.)

 o 24-pin User/parallel port (modem (1670), RS-232 serial)

 o Composite video/audio port (8-pin DIN)

 o Analog RGB video port (DB-9)

 o RF video output jack

 o Serial bus port (disks (1541/1571/1581), printers, etc.)

 o External floppy drive port (mini DIN8)

 o 2 DB9 control ports (joystick, mouse, tablets, lightpen)

 o Left and right stereo audio output jacks

 o RAM expansion port, built-in support for RAM controller

 o Keyboard -- 77 keys, including standard C64 keyboard plus:

 o Total of 8 function keys, F1-F16, shifted and nonshifted

 o TAB, escape, ALT, CAPS lock, no scroll, help (F15/16)

 o Power, disk activity LEDs

 o Power supply -- external, brick type

 o +5VDC at 2.2A and +12VDC at .85A

1.3. System Components

Microcontroller: 4510 (65CE02, 2x6526, 6511 UART, Mapper,

 Fast serial)

Memory: 4464 DRAM (128K bytes)

 271001 ROM (128K bytes)

Video controller: 4567 (extended VIC, DAT, PLA)

Audio controllers: 6581 (SID)

Memory control: 41xx-F018 (DMA)

Disk controller: 41xx-F011 (FDC, supports 2 DSDD drives, MFM,

 RAM buffer)

KEYS

 + USER PORT

 | + CONTROL PORTS EXPANSION PORT

 | | + + + + +---+

 | | | | | | | | +MOD-> RFOUT

++-+-++ | | | | +-+----> COMP,CHROMA/LUMA

| | | | | | +------> RGBA

| +-------------------------------------+------+ | +---+

| +--+ +--...-+ R +--+

| | | | | | E | EXPANSION

| | +---+ +---+ +---+ +---+ +---+ | | | +--...-+ C +--+ MEMORY

| 4 | | | | | | | | | | | | | | 4 | +---+

| 5 +-----+ D +--+ F +--+ S +--+ S +--+ R +-+----+ 5 | +--+ +--+ +--+ +--+

| 1 +-----+ M +--+ D +--+ I +--+ I +--+ O +------+ 6 | | | | | | | | |

| 0 | ADR | A | | C | | D | | D | | M | | | 7 +--+ +--+ +--+ +--+ |

| | | G | | | | | | | | | | | +--+ +--+ +--+ +--+ |

| +-----+ I +--+ +--+ +--+ +--+ +---+--+ +--+ +--+ +--+ +--+ |

| +-----+ C +--+ +--+ +--+ +--+ +------+ +--+ +--+ +--+ +--+ |

| | DAT | | | | | | | | | | | | | | | | | | | |

+--+--+ +---+ +++-+ +-+-+ +-+-+ +---+ +---+ +--+ +--+ +--+ +--+

 | || | | 128K

 + || R L RAM INTERNAL

SERIAL BUS || SPEAKERS

 ++

 FLOPPY PORT

1.4. System Concerns

1.4.1. C64 Compatibility Issues

1.4.1.1. Software

C64 software compatibility is an important goal. To this end, when the

system is in "C64 mode" the processor will operate at average 1.02MHz

speed and dummy "dead" cycles are emulated by the processor. The C64

ROM is the same except for patches to serial bus routines in the

kernel (to interface built-in drive), the removal of cassette code

(there is no cassette port), and patches to the C64 initialization

routines to boot C65 mode if there is no reason (eg., cartridges) to

stay in C64 mode.

Compatibility with C64 software that uses previously unimplemented

6502 opcodes (often associated with many copy-protection schemes) or

that implements extremely timing dependent "fast loaders" is iherently

impossible. Because the VIC-III timing is slightly different, programs

that are extremely timing dependant may not work properly. Also

because the VIC-III does not change display modes until the end of a

character line, programs that change displays based strictly upon the

raster position may not display things properly. The aspect ratio of

the VIC-III display is slightly different than the VIC-II. The use of

a 1541-II disk drive (optional) will improve compatibility. C64 BASIC

2.2 compatibility will be 100% (within hardware constraints). C128

BASIC 10 compatibility will be moderate (graphic commands are

different, some command parameters different, and there are many new

commands).

1.4.1.2. Hardware

C64 hardware compatibility is limited. Serial bus and control port

devices (mouse, joysticks, etc.) are fully supported. Some user port

devices are supported such as the newer (4-DIP switch) 1670 modems,

but there's no 9VAC so devices which require 9VAC won't function

correctly. The expansion port has additional pins (50 total), and the

pin spacing is closer than the C64 (it's like the PLUS/4). An adaptor

("WIDGET") will be necessary to utilize C64 cartridges and expansion

port devices. Furthermore, timing differences between some C64 and C65

expansion port signals will affect many C64 expansion devices (such as

the 1764).

1.4.2. DOS Compatibility

The built-in C65 DOS is a subset of Commodore 1581 DOS. There is no

track cache, index sensor, etc. To load and run existing 1541-based

applications, the consumer must add a 1541 drive to the system. Many

commercial applications cannot be easily ported from 1541/5.25" media

to 1581/3.5" media, due to copy protection or "fast loaders". Most C64

applications that directly address DOS memory, specific disk tracks

or sectors, or rely on DOS job queues and timing characteristics will

not work with the built-in drive and new DOS.

1.4.3. Operating Modes

The C65 powers up in the C64 mode. If there are no conditions present

which indicate that C64 mode is desired, such as the C= key depressed

or a C64 cartridge signature found, then C65 mode will be

automatically brought into context. Unlike the C128, "C6 4 mode" is

escapable. Like the C128, all of the extended features of the C65

system are accessible from "C64 mode" via custom software. Whenever

the system initiates C64 mode, new VIC mode is always disabled except

when the DOS is required.

1.5. System Maps

1.5.1. Composite System Memory Map

 C64 CARTRIDGES C64 C65 RAM-LO RAM-HI

$FFFF+-----------+ +-----------+ +-----------+ +-----------+ +-----------+

 | | | | | | | | |COLOR NYBS |

$F800| GAME | | KERNEL | | KERNEL | | | +-----------+

 | | | & | | & | | | | |

 | CARD | | EDITOR | | EDITOR | | | | |

 | | | | | | |.......... | | |

$E000+-----------+ +-----------+ +-----------+ | C65 EVEN | | C65 ODD |

 |COLOR NYBS | |COLOR NYBS | | BITPLANES | | BITPLANES |

 |I/O & CHARS| |I/O & CHARS| |.......... | | |

$D000 ------------ +-----------+ +-----------+ | | | |

 | | | | | |

 | KERNEL | | | | |

 | | | C65 BASIC | | C65 VARS &|

$C000+-----------+ +-----------+ +-----------+ | TEXT | | STRINGS |

 | | | | | | |$2000-$FEFF| |$2000-$F7FF|

 |APPLICATION| | | | | | | | |

 | | | BASIC | | | | | | |

 | CARD _ HI | | | | BASIC | | | | |

 | | | | | GRAPHICS | | | | |

$A000+-----------+ +-----------+ | | +-----------+ | |

 | | | | | | | |

 |APPLICATION| | DOS | | | | |

 | | | (MAPPED) | | | | |

 | CARD _ LOW| | | | | | |

 | | | | | C64 VARS &| | |

$8000+-----------+ ------------- +-----------+ | STRINGS | | |

 |COLOR NYBS | | TEXT-$BFFF| | |

 |I/O & CHARS| | | | |

$6000 -------------------------- +-----------+ | C64 BASIC | | |

 | | | TEXT | | |

 | | |$0800-VARS | | |

 | | | | | |

 | | | | | |

 | BASIC | | | | |

 | | | | | |

 | | | | | |

 | | | | | |

$2000 -------------------------- +-----------+ +-----------+ +-----------+

 | C65 SYSTEM| | C64 & C65 |

 |TEXTSCREENS| | DOS |

$0000 -- +-----------+ +-----------+

1.5.2. C65 System Memory Map

 MAPPER BANK

 -----+-----

 |

 |

 1M $F,FFFF +-------------+ ----------

 | |

 +- -+

 | RAM | 512K BLOCK APPEARING

 768K $C,0000 +- -+ HERE IS DETERMINED BY

 | EXPANSION | THE RAM EXPANDER CTLR

 +- -+ (UP TO 8MB TOTAL MAP)

 | |

 512K $8,0000 +-------------+ ----------

 | |

 +- RESERVED -+ FUTURE CARTRIDGES

 | |

 256K $4,0000 +-------------+ ----------

 | SYSTEM ROMS |

 128K $2,0000 +-------------+ SEE SYSTEM MEMORY

 | SYSTEM ROMS | LAYOUT, BELOW

 $0,0000 +-------------+ ----------

1.5.3. C65 System Memory Layout

 BANK 0 BANK 1 BANK 2 BANK 3

 RAM-LO RAM-HI ROM-LO ROM-HI

$FFFF +-------------+ +-------------+ +-------------+ +-------------+

$F800 | | | COLOR NYBS | | C64 | | C65 |

 | | +-------------+ | KERNEL | | KERNEL |

$E000 | BITPLANES | | | +-------------+ +-------------+

 | (EVEN) | | | | C64 CHRSET | | |

$D000 | | | BITPLANES | +-------------+ | RESERVED |

 | | | (ODD) | | INTERFACE | | |

$C000 +.............+ +.............+ +-------------+ +-------------+

 | | | | | C64 | | |

 | | | | | BASIC | | |

$A000 | STRUCTURES | | STRINGS | +-------------+ | GRAPHICS |

 | ??? | | | | C65 | | |

 | | | | | CHRSET | | |

$8000 +.............+ +.............+ +-------------+ +-------------+

 | | | | | | | |

 | | | | | | | |

 | | | | | | | |

 | | | | | | | |

 | BASIC | | BASIC | | RESERVED | | C65 BASIC |

 | TEXT | | VARIABLES | | | | |

 | | | | | | | |

 | | | | | | | |

$4000 | | | | +-------------+ | |

 | | | | | | | |

 | | | | | | | |

 | | | | | | | |

$2000 +-------------+ +-------------+ | | +-------------+

 | TEXT SCREEN | | DOS | | DOS | | MONITOR |

 +-------------+ | | | | | |

 | | | BUFFERS | | (MAPS TO | | (MAPS TO |

 | SYSTEM VARS | | & VARS | | $8000) | | $6000) |

 | | | | | | | |

$0000 +-------------+ +-------------+ +-------------+ +-------------+

What does this mean? Here is what the 64K memory map looks like in

various configurations (i.e., as seen by the processor):

C64 mode: $E000-$FFFF Kernel, Editor, Basic overflow area

--------- $D000-$DFFF I/O and Color Nybbles, Character ROM

 $C000-$CFFF Application RAM

 $A000-$BFFF BASIC 2.2

 $0002-$9FFF RAMLO. VIC screen at $0400-$07FF

 BASIC program & vars from $0800-$9FFF

C65 mode: $E000-$FFFF Kernel, Editor ROM code

--------- $D000-$DFFF I/O and Color Bytes (CHRROM at $29000)

 $C000-$CFFF Kernel Interface, DOS ROM overflow area

 $8000-$BFFF BASIC 10.0 Graphics & Sprite ROM code

 $2000-$7FFF BASIC 10.0 ROM code

 $0002-$1FFF RAMLO. VIC screen at $0800-$0FFF

 BASIC prgs mapped from $02000-$0FF00

 BASIC vars mapped from $12000-$1F7FF

C65 DOS mode: $E000-$FFFF Kernel, Editor ROM code

------------- $D000-$DFFF I/O (CIA's mapped out), Color Bytes

 $C800-$CFFF Kernel Interface

 $8000-$C3FF DOS ROM code

 $2000-$7FFF (don't care)

 $0000-$1FFF DOS RAMHI

C65 Monitor: $E000-$FFFF Kernel, Editor ROM code

------------ $D000-$DFFF I/O and Color Bytes

 $C000-$CFFF Kernel Interface

 $8000-$BFFF (don't care)

 $6000-$7FFF Monitor ROM code

 $0002-$5FFF RAMLO

It's done this way for a reason. The CPU MAPPER restricts the

programmer to one offset for each 32Kbyte half of a 64Kbyte segment.

For one chunk of ROM to MAP in another chunk with a different offset,

it must do so into the other half of memory from which it is

executing. The OS does this by never mapping the chunk of ROM at

$C000-$DFFF, which allows this chunk to contain the Interface/MAP code

and I/O (having I/O in context is usually desirable, and you can't map

I/O anyhow). The Interface/MAP ROM can be turned on and off via VIC

register $30, bit 5 (ROM @ $C000), and therefore does not need to be

mapped itself. Generally, OS functions (such as the Kernel, Editor,

and DOS) live in the upper 32K half of memory, and applications such

as BASIC or the Monitor) live in the lower 32K half. For example,

when Monitor mode is entered, the OS maps out BASIC and maps in the

Monitor. Each has ready access to the OS, but no built-in access to

each other. When a DOS call is made, the OS overlays itself with the

DOS (except for the magical $C000 code) in the upper 32K half of

memory, and overlays the application area with DOS RAM in the lower

32K half of memory.

1.5.4. C65 System I/O Memory Map

 +-------------+

 $DF00 | I/O-2 | EXTERNAL I/O SELECT

 $DE00 | I/O-1 | EXTERNAL I/O SELECT

 +-------------+

 $DD00 | CIA-2 | SERIAL, USER PORT

 $DC00 | CIA-1 | KEYBOARD, JOYSTICK, MOUSE CONTROL

 +-------------+

 $D800 | COLOR NYB | COLOR MATRIX (*FROM $1F800-$1FFFF)

 +-------------+

 $D700 | DMA | *DMA CONTROLLER

 +-------------+

 $D600 | UART | *RS-232, FAST SERIAL, NEW KEY LINES

 +-------------+

 $D440 | SID (L) | AUDIO CONTROLLER (LEFT)

 $D400 | SID (R) | AUDIO CONTROLLER (RIGHT)

 +-------------+

 $D300 | BLU PALETTE |

 $D200 | GRN PALETTE | *COLOR PALETTES (NYBBLES)

 $D100 | RED PALETTE |

 +-------------+

 $D0A0 | REC | *RAM EXPANSION CTRL (OPTIONAL)

 +-------------+

 $D080 | FDC | *DISK CONTROLLER

 +-------------+

 $D000 | VIC-4567 | VIDEO CONTROLLER

 +-------------+

 .

 .

 .

 +-------------+

 $0000 | 4510 | MEMORY CONTROL FOR C64 MODE

 +-------------+ (this register is actually in

 the VIC-4567 in the C65)

*NOTE: VIC must be in "new" mode to address these devices

2.0. C65 System Hardware

2.1.1. Keyboard Layout

+----+ +----+----+----+----+ +----+----+----+----+ +----+----+----+----+

|RUN | |ESC |ALT |ASC | NO | | F1 | F3 | F5 | F7 | | F9 | F11| F13|HELP|

|STOP| | | |DIN |SCRL| | F2 | F4 | F6 | F8 | | F10| F12| F14| |

+----+ +----+----+----+----+ +----+----+----+----+ +----+----+----+----+

+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+

| <- | ! | " | # | $ | % | & | ' | (|) | | | | |CLR |INST|

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | + | - | ś |HOME|DEL |

+----+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+----+

| TAB | | | | | | | | | | | | | ă | RSTR |

| | Q | W | E | R | T | Y | U | I | O | P | @ | * | ^ | |

+----+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+------+

|CTRL|SHFT| | | | | | | | | | [|] | | RETURN |

| |LOCK| A | S | D | F | G | H | J | K | L | : | ; | = | |

+----+----+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+----+----+----+

| C= | SHIFT | | | | | | | | < | > | ? | SHIFT|CRSR|

| | | Z | X | C | V | B | N | M | , | . | / | | UP |

+----+-------+-+--+----+----+----+----+----+----+----+----+-+--+-+----+----+----+

 | SPACE | |CRSR|CRSR|CRSR|

 | | |LEFT|DOWN|RITE|

 +--+ +----+----+----+

Notes:

1/ The cursor keys are special -- the shifted cursor keys appear as

 separate keys, but in actuality pressing them generates a SHIFT

 plus the normal cursor code, making them totally compatible with,

 and therefore functional in, C64 mode.

2/ There are a total of 77 keys, two of which are locking keys.

3/ The NATIONAL keyboards are similar, and their layout and operation

 is identical to their C128 implementation.

2.1.2. Keyboard Matrix

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+ +-----+

 | C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | | GND |

 |PIN20|PIN19|PIN18|PIN17|PIN16|PIN15|PIN14|PIN13|PIN-4| |PIN-1|

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +--+--+

 | | | | | | | | | |

 | | | | | | | | | |

 V V V V V V V V V |

+-----+ +-----+-----+-----+-----+-----+-----+-----+-----+-----+ |

| R0 |<----+ INS | # | % | ' |) | + | ś | ! | NO | |

|PIN12| | DEL | 3 | 5 | 7 | 9 | | | 1 | SCRL| |

+-----+ +-----+-----+-----+-----+-----+-----+-----+-----+-----+ |

| R1 |<----+ RET | W | R | Y | I | P | * | <-- | TAB | |

|PIN11| | | | | | | | | | | |

+-----+ +-----+-----+-----+-----+-----+-----+-----+-----+-----+ |

| R2 |<----+ HORZ| A | D | G | J | L |] | CTRL| ALT | |

|PIN10| | CRSR| | | | | | ; | | +----------+ |

+-----+ +-----+-----+-----+-----+-----+-----+-----+-----+-----+ | |

| R3 |<----+ F8 | $ | & | { | 0 | - | CLR | " | HELP| | |

|PIN-9| | F7 | 4 | 6 | 8 | | | HOM | 2 | | | |

+-----+ +-----+-----+-----+-----+-----+-----+-----+-----+-----+ | |

| R4 |<----+ F2 | Z | C | B | M | > |RIGHT|SPACE| F10 | | |

|PIN-8| | F1 | | | | | . |SHIFT| BAR | F9 | | |

+-----+ +-----+-----+-----+-----+-----+-----+-----+-----+-----+ | |

| R5 |<----+ F4 | S | F | H | K | [| = | C= | F12 | | |

|PIN-7| | F3 | | | | | : | | | F11 | | |

+-----+ +-----+-----+-----+-----+-----+-----+-----+-----+-----+ | |

| R6 |<----+ F6 | E | T | U | O | @ | ă | Q | F14 | | |

|PIN-6| | F5 | | | | | | ^ | | F13 | | |

+-----+ +-----+-----+-----+-----+-----+-----+-----+-----+-----+ | |

| R7 |<----+ VERT|LEFT | X | V | N | < | ? | RUN | ESC +------+ | |

|PIN-5| | CRSR|SHIFT| | | | , | / | STOP| +--+ | | |

+-----+ +--+--+--+--+-----+-----+-----+-----+--+--+-----+-----+ | | | |

 | | | | | | |

 | | | | | | |

 | +--+--+ / (LOCKING) | | | | |

 | |SHIFT+----+ +------------------------------------+ | | |

 | | LOCK| | | | |

 | +-----+ | | | |

 | +-----+-----+ | | |

 +--+--+ | | | | |

 |CRSR +------------+-------------+ +---------------+ | |

 | UP | K1 PIN-21 | | | |

 +--+--+ | 4066 | | |

 | | DECODER | | |

 +--+--+ | | | |

 |CRSR +------------+-------------+ +-------------------+ |

 |LEFT | K2 PIN-22 | | |

 +-----+ +-----------+ |

 |

+-----+ +-----+ / |

| NMI | <---------+RESTR+----+ +---+

|PIN-3| | | |

+-----+ +-----+ |

 |

 |

+-----+ +-----+ / (LOCKING) |

| R8 | <---------+CAPS +----+ +---+

|PIN-2| |LOCK |

+-----+ +-----+

Keyboard Notes:

1/ The 64 keys under C0 through C7 occupy the same matrix position as

 in the C/64, as does the RESTORE key. Including SHIFT-LOCK, there

 are 66 such keys.

2/ The extended keyboard consists of the 8 keys under the C8 output.

 Counting the CAPS-LOCK key, there are 9 new keys. The C/64 does not

 scan these keys.

3/ The new CURSOR LEFT and CURSOR UP keys simulate a CURSOR plus RIGHT

 SHIFT key combination.

4/ The keyboard mechanism will be mechanically similar to that of the

 C128.

2.2. Form Factor

 EXPANSION SERIAL USER PORT STEREO RGBA RF COMPOSITE FAST DISK

 PORT BUS (PARALLEL) L R VIDEO VIDEO VIDEO PORT

 ######### #### ######### # # ##### ### ##### ####

 |~ ~~~ ~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~~ ~~|

|

POWER CONNECTOR |

 | +------------------+

POWER SWITCH | |

 | | |

| |

CONTROL PORT #2 | |

| 3.5" |

 | +--------------------------+ | |

| | | DISK DRIVE |

CONTROL PORT #1 | | | |

| RAM EXPANSION (BOTTOM) | | |

 | | | | |

RESET | | | EJECT |

 | +--------------------------+ +------------+---+-+

 | +---+ |

 | |

 +---+

NOTES:

 1. Dimensions: about 18" wide, 8" deep, 2" high.

 2. Disk unit faces forward.
3.0. System Software

3.1. BASIC 10.0

 C64DX BASIC 10.0

3.1.1. INTRODUCTION

 This section lists BASIC 10.0 commands, statements, and functions

in alphabetical order. It gives a complete list of the rules (syntax)

of BASIC 10.0, along with a concise description of each.

COMMAND AND STATEMENT FORMAT

 The commands and statements presented in this section are

governed by consistent format conventions designed to make them as

clear as possible. In most cases, there are several actual examples to

illustrate what the actual command looks like. The following example

shows some of the format conventions that are used in the BASIC

commands:

 EXAMPLE: DLOAD <"program name"|(file_name_var)> [,U#] [,D#]

 | | | |

 | | | |

 keyword argument (if any) optional arguments

 The parts of the command or statement that the user must type in

exactly as they appear are in capital letters. Words that don't have

to be typed exactly, such as the name of the program, are not

capitalized. When quote marks (" ") appear (usually around a program

or file name), the user should include them in the appropriate place

according, to the format example.

 KEYWORDS, also called RESERVED WORDS, appear in uppercase

letters. THESE KEYWORDS MUST BE ENTERED EXACTLY AS THEY APPEAR.

However, many keywords have abbreviations that can also be used.

 Keywords are words that are part of the BASIC language that the

computer understands. Keywords are the central part of a command or

statement. They tell the computer what kind of action to take. These

words cannot be used as variable names.

 ARGUMENTS (also called parameters) appear in lower case.

Arguments are the parts of a command or statement; they complement

keywords by providing specific information about the command or

statement. For example, a keyword tells the computer to load a

program, while the argument tells the computer which specific program

to load and a second argument specifies which drive the disk

containing the program is in. Arguments include filenames, variables,

line numbers, etc.

 SQUARE BRACKETS [] show OPTIONAL arguments. The user selects any

or none of the arguments listed, depending on the requirements.

 ANGLE BRACKETS <> indicates that the user MUST choose one of the

arguments listed.

 VERTICAL BAR | separates items in a list of arguments when the

choices are limited to those arguments listed, and no other arguments

can be used. Then the vertical bar appears in a list enclosed in

SQUARE BRACKETS, the choices are limited to the items in the list, but

still have the option not to use any arguments.

 ELLIPSIS ..., a sequence of three dots, means that an option or

argument can be repeated more than once.

 QUOTATION MARKS " " enclose character strings, filenames, and

other expressions. When arguments are enclosed in quotation marks in a

format, the quotation marks must be included in a command file or

statement. Quotation marks are not conventions used to describe

formats; they are required parts of a command or statement.

 PARENTHESES () When arguments are enclosed in parentheses in a

format, they must be included in a command or statement. Parentheses

are not conventions used to describe formats; they are required parts

of a command or statement.

 VARIABLE refers to any valid BASIC variable name such as X, A$,

or T%.

 EXPRESSION means any valid BASIC expression, such as A+B+2 or

.5*(X+3).

3.1.2. ALPHABETICAL LIST OF COMMANDS, FUNCTIONS, and OPERATORS

* Token = AC multiplication

+ Token = AA addition

- Token = AB subtraction

/ Token = AD division

< Token = B3 less-than

= Token = B2 equal

> Token = B1 greater-than

^ Token = AE exponentiation

(PI) Token = FF return value of PI

ABS Token = B6 absolute function

AND Token = AF logical AND operator

APPEND Token = FE,0E append file

ASC Token = C6 string to PETSCII function

ATN Token = C1 trigonometric arctangent function

AUTO Token = DC auto line numbering

BACKGROUND Token = FE,3B background color

BACKUP Token = F6 backup diskette

BANK Token = FE,02 memory bank selection

BEGIN Token = FE,18 start logical program block

BEND Token = FE,19 end logical program block

BLOAD Token = FE,11 binary load file from diskette

BOOT Token = FE,1B load & run ML, or BASIC autoboot

BORDER Token = FE,3C border color

BOX Token = E1 draw graphic box

BSAVE Token = FE,10 binary save to disk file

BUMP Token = CE,03 sprite collision function

BVERIFY Token = FE,28 verify memory to binary file

CATALOG Token = FE,0C disk directory

CHANGE Token = FE,2C edit program

CHAR Token = E0 display characters on screen

CHR$ Token = C7 PETSCII to string function

CIRCLE Token = E2 draw graphic circle

CLOSE Token = A0 close channel or file

CLR Token = 9C clear BASIC variables, etc.

CMD Token = 9D set output channel

COLLECT Token = F3 validate diskette (chkdsk)

COLLISION Token = FE,17 enable BASIC event

COLOR Token = E7 set screen colors

CONCAT Token = FE,13 concatenate two disk files

CONT Token = 9A continue BASIC program execution

COPY Token = F4 copy a disk file

COS Token = BE trigonometric cosine function

CUT Token = E4 cut graphic area

DATA Token = 83 pre-define BASIC program data

DCLEAR Token = FE,15 mild reset of disk drive

DCLOSE Token = FE,0F close disk channel or file

DEC Token = D1 decimal function

DEF Token = 96 define user function

DELETE Token = F7 delete BASIC lines or disk file

DIM Token = 86 dimension BASIC array

DIR Token = EE disk directory

DISK Token = FE,40 send disk special command

DLOAD Token = F0 load BASIC program from disk

DMA Token = FE,1F define & execute DMA command

DMA Token = FE,21 "

DMA Token = FE,23 "

DMODE Token = FE,35 set graphic draw mode

DO Token = EB start BASIC loop

DOPEN Token = FE,0D open channel to disk file

DPAT Token = FE,36 set graphic draw pattern

DSAVE Token = EF save BASIC program to disk

DVERIFY Token = FE,14 verify BASIC memory to file

ELLIPSE Token = FE,30 draw graphic ellipse

ELSE Token = D5 if/then/else clause

END Token = 80 end of BASIC program

ENVELOPE Token = FE,0A define musical instrument

ERASE Token = FE,2A delete disk file

ERRS Token = D3 BASIC error function

EXIT Token = FD exit BASIC loop

EXP Token = BD exponentiation function

FAST Token = FE,25 set system speed to maximum

FILTER Token = FE,03 set audio filter parameters

FIND Token = FE,2B hunt for string in BASIC program

FN Token = A5 define user function

FOR Token = 81 start BASIC for/next loop

FOREGROUND Token = FE,39 set foreground color

FRE Token = B8 available memory function

GCOPY Token = FE,32 graphic copy

GENLOCK Token = FE,38 set video sync mode

GET Token = Al receive a byte of input

GO Token = CB program branch

GOSUB Token = 8D program subroutine call

GOTO Token = 89 program branch

GRAPHIC Token = DE set graphic mode

HEADER Token = F1 format a diskette

HELP Token = EA display BASIC line causing error

HEX$ Token = D2 return hexadecimal string function

HIGHLIGHT Token = FE,3D set highlight color

IF Token = 8B if/then/else conditional

INPUT Token = 85 receive input data from keyboard

INPUT# Token = 84 receive input data from channel (file)

INSTR Token = D4 locate a string within a string

INT Token = B5 integer function

JOY Token = CF joystick position function

KEY Token = F9 define or display function key

LEFT$ Token = C8 leftmost substring function

LEN Token = C3 length of string function

LET Token = 88 variable assignment

LINE Token = E5 draw graphic line, input line

LIST Token = 9B list BASIC program

LOAD Token = 93 load program from disk

LOCATE Token = E6 (currently unimplemented)

LOG Token = BC natural log function

LOOP Token = EC end of do/loop

LPEN Token = CE,04 lightpen position function

MID$ Token = CA substring function

MONITOR Token = FA enter ML Monitor mode

MOUSE Token = FE,3E set mouse parameters

MOVSPR Token = FE,06 set sprite position and speed

NEW Token = A2 clear BASIC program area

NEXT Token = 82 end of for-next loop

NOT Token = A8 logical complement function

OFF Token = FE,24 (subcommand)

ON Token = 91 multiple branch or subcommand

OPEN Token = 9F open I/O channel

OR Token = B0 logical or function

PAINT Token = DF graphic flood-fill

PALETTE Token = FE,34 set palette color

PASTE Token = E3 draw graphic area from cut buffer

PEEK Token = C2 return memory byte function

PEN Token = FE,33 set graphic pen color

PIC Token = FE,37 graphic subcommand

PLAY Token = FE,04 play musical notes from string

POINTER Token = CE,0A address of string var function

POKE Token = 97 change memory byte

POLYGON Token = FE,2F draw graphic polygon

POS Token = B9 text cursor position function

POT Token = CE,02 return paddle position

PRINT Token = 99 display data on text screen

PRINT# Token = 98 send data to channel (file)

PUDEF Token = DD define print-using symbols

QUIT Token = FE,1E (currently unimplemented)

RCLR Token = CD (currently unimplemented)

RDOT Token = D0 (currently unimplemented)

READ Token = 87 read program pre-defined program data

RECORD Token = FE,12 set relative disk file record pointer

REM Token = 8F BASIC program comment

RENAME Token = F5 rename disk file

RENUMBER Token = F8 renumber BASIC program lines

RESTORE Token = 8C set DATA pointer, subcommand

RESUME Token = D6 resume BASIC program after trap

RETURN Token = 8E end of subroutine call

RGR Token = CC (currently unimplemented)

RIGHT$ Token = C9 rightmost substring function

RMOUSE Token = FE,3F read mouse position

RND Token = BB pseudo random number function

RREG Token = FE,09 return processor registers after SYS

RSPCOLOR Token = CE,07 return sprite color function

RSPPOS Token = CE,05 return sprite position function

RSPRITE Token = CE,06 return sprite parameter function

RUN Token = 8A run BASIC program from memory or disk

RWINDOW Token = CE,09 return text window parameter function

SAVE Token = 94 save BASIC program to disk

SCALE Token = E9 (currently unimplemented)

SCNCLR Token = E8 erase text or graphic display

SCRATCH Token = F2 delete disk file

SCREEN Token = FE,2E set parameters or open graphic screen

SET Token = FE,2D set system parameter, subcommand

SGN Token = B4 return sign of number function

SIN Token = BF trigonometric sine function

SLEEP Token = FE,0B pause BASIC program for time period

SLOW Token = FE,26 set system speed to minimum

SOUND Token = DA perform sound effects

SPC Token = A6 skip spaces in printed output

SPRCOLOR Token = FE,08 set multicolor sprite colors

SPRDEF Token = FE,1D (currently unimplemented)

SPRITE Token = FE,07 set sprite parameters

SPRSAV Token = FE,16 set or copy sprite definition

SQR Token = BA Square root function

STEP Token = A9 for-next step increment

STOP Token = 90 halt BASIC program

STRS Token = C4 string representation of number function

SYS Token = 9E call ML routine

TAB Token = A3 tab position in printed output

TAN Token = C0 trigonometric tangent function

TEMPO Token = FE,05 set tempo (speed) of music play

THEN Token = A7 if/then/else clause

TO Token = A4 (subcommand)

TRAP Token = D7 define BASIC error handler

TROFF Token = D9 BASIC trace mode disable

TRON Token = D8 BASIC trace mode enable

TYPE Token = FE,27 display sequential disk file

UNTIL Token = FC do/loop conditional

USING Token = FB define print output format

USR Token = B7 call user ML function

VAL Token = C5 numeric value of a string function

VERIFY Token = 95 compare memory to disk file

VIEWPORT Token = FE,31 (currently unimplemented)

VOL Token = DB set audio volume

WAIT Token = 92 pause program pending memory condition

WHILE Token = ED do/loop conditional

WIDTH Token = FE,1C (currently unimplemented)

WINDOW Token = FE,1A set text screen display window

XOR Token = CE,08 logical xor function

3.1.3. BASIC 10.0 COMMAND AND FUNCTION DESCRIPTION

ABS -- Absolute value function

 ABS (expression)

The ABSolute value function returns the unsigned value of the numeric

expression.

 X = ABS(1) Result is X = 1

 X = ABS(-1) Result is X = 0

AND -- Boolean operator

 expression AND expression

The AND operator returns a numeric value equal to the logical AND of

two numeric expressions, operating on the binary value of signed

16-bit integers in the range (-32768 to 32767). Numbers outside this

range result in an 'ILLEGAL QUANTITY' error.

 X = 4 AND 12 Result is X=4

 X = 8 AND 12 Result is X=8

 X = 2 AND 12 Result is X=0

In the case of logical comparisons, the numeric value of a true

situation is -1 (equivalent to 65535 or $FFFF hex) and the numeric

value of a false situation is zero.

 X = ("ABC"="ABC") AND ("DEF"="DEF") Result is X=-l (true)

 X = ("ABC"="ABC") AND ("DEF"="XYZ") Result is X= 0 (false)

APPEND -- Open a disk file and prepare to append data to it

 APPEND# logical_file_number, "filename" [,Ddrive] [<ON|,>Udevice]

Opens filename for writing, and positions the file pointer at the end

of the file. Subsequent PRINT# statements to the logical_file_number

will cause data to be appended to the end of this file. If the file

does not exist, it will be created.

APPEND#1, "filename"

APPEND#1, (file$), ON U(unit)

ASC -- PETSCII value function

 ASC (string)

This function returns the PETSCII numeric value of the first

character of a string. The PETSCII value of an empty (null) string is

zero. This function is the opposite of the CHR$ function. Refer to the

Table of PETSCII Character Codes.

 X = ASC("ABC") Result is X=65

 X = ASC("") Result is X=0

ATN -- Arc tangent function

 ATN (expression)

This function returns the angle whose tangent is the value of the

numeric expression, measured in radians. The result is in the range

of -PI/2 to PI/2 radians.

 X = ATN(45) Result is X=1.54050257

To get the arc tangent of an angle measured in degrees, multiply the

numeric expression by PI/180.

AUTO -- Enable or disable automatic line numbering

 AUTO [increment]

Turns on the automatic line numbering feature which eases the job of

entering programs by typing the line numbers for the user. As each

program line is entered by pressing <RETURN> the next line number is

printed on the screen, with the cursor in position to begin typing

that line. The increment parameter refers to the increment between

line numbers. AUTO with no increment given turns off auto line

numbering. AUTO mode is also turned off automatically when a program

is RUN. This statement is executable only in direct mode.

 AUTO 10 automatically numbers line in increments of ten.

 AUTO 50 automatically numbers line in increments of fifty.

 AUTO turns off automatic line numbering.

BACKGROUND -- Set the background color of the display

 BACKGROUND color

Sets the screen background color to the given color. The color given

must be in the range (0-15). See the Color Table.

BACKUP -- Backup an entire disk from one drive to another

BACKUP Dsource_drive TO Ddestination_drive [<ON|,>Udevice]

This command copies all the files on a diskette to another on a dual

drive system only. It cannot backup diskettes using CBM serial bus

type drives, for example. If the destination diskette is unformatted,

BACKUP will automatically format it. BACKUP copies every sector, so

any data already on the destination diskette will be overwritten. To

copy specific files from one drive to another, use the COPY command.

NOTE: This command can only be used with a dual disk drive, such as

the built-in C64DX drive and optional F016-type expansion drive. To

backup diskettes using different drives, such as the built-in drive

and a 1581-type serial bus drive, use a utility program.

BACKUP D0 to D1 Copies all files from the disk in

 drive 0 to the disk in drive 1.

BACKUP D0 TO D1, ON U9 Copies all files from drive 0 to

 drive 1 in disk drive unit 9.

BANK -- Set the memory bank number for PEEK, POKE, SYS, WAIT, LOAD, SAVE

 BANK memory_bank

 [*** THIS COMMAND MIGHT CHANGE ***]

This command should be used before and BASIC command that has an

address parameter. The address parameters are limited to the range

(0-65535, $0000-$FFFF hex). The BANK command tells the computer which

64K byte memory bank the location you want is in.

The memory_bank parameter is number from 0-255. Refer to the System

memory map to see what is in each bank. A BANK number greater than

127 (i.e., has its most significant bit set) means "use the current

system configuration", and must be used to access an I/O location.

BASIC defaults to BANK 128.

For examples, see PEEK, POKE, etc.

BEGIN/BEND -- Extend an IF clause over more than one line

BEGIN/BEND are used to define a block of code which is considered by

the IF statement to be one statement.

The normal usage of IF/THEN/ELSE would be along the following lines:

 IF boolean THEN statement(s) : ELSE statement(s)

The main restriction is that the entire body of the IF/THEN/ELSE

construct can only occupy one line. BEGIN/BEND allows either the

'THEN' or the 'ELSE' clause to run on for more than one line.

 IF boolean THEN BEGIN: statements...

 statements...

 statements... BEND : ELSE BEGIN

 statements...

 statements... BEND

Remember, however, that this is only a way to extend the body for more

than one line: all other 'IF/THEN' rules apply. For example:

100 IF x=1 THEN BEGIN : a=5

110 : b=6

120 : c=7

130 BEND : print "ah-ha!"

In the above example, "ah-ha!" would be printed ONLY if the expression

'x=1' is TRUE, because the print statement is on the same logical line

as the THEN clause.

It is bad practice to GOTO a line in the middle of a BEGIN-BEND block.

If BEGIN or BEND is encountered outside of an active IF statement, it

is ignored.

BLOAD -- loads a binary disk file into memory

 BLOAD "filename" [,Bbank] [,Paddress] [<ON|,>Udevice]

Used to load a machine language program or other binary data (such as

display pictures or sprite data) into memory. If a load address is

not given, the load address given in the disk file will be used. If a

bank number is not given, the bank given in the last BANK statement

will be used. If a load overflows a bank (that is, the load address

exceeds 65535 ($FFFF)), an 'OUT OF MEMORY' error is reported. Also see

the LOAD command.

 BLOAD "sprites", P(dec("600")), B0

BOOT -- Load and execute a program

 BOOT

 BOOT SYS

 BOOT filename [,Bbank] [,Paddress] [,Ddrive] [<ON|,>Udevice]

BOOT without a filename given causes the computer to look for a BASIC

program called AUTOBOOT.C65* on the indicated diskette, LOAD it and

RUN it (just like RUN "AUTOBOOT.C65*").

BOOT with a filename given will cause the executable binary file to be

BLOADed and executed beginning at the load address. If a load address

is not given, the file will be loaded and execution begun at the

address stored on disk.

BOOT SYS is a special command that copies the "home" sector (the very

track and sector) of the C64DX built-in drive into memory at address

$400 to $5FF (one physical sector, 512 bytes) and perform a machine

language JSR (Jump SubRoutine) to it. It has the same function as

turning on your C64DX while holding down the ALT key. It is used to

boot an alternate operating system from either a CBM 3.5" diskette or

an MSDOS (720K) diskette. If used in a BASIC program, and it fails,

the system can be corrupted. BOOT SYS does *not* use the normal DOS

to access the disk.

 BOOT Loads & runs BASIC program called

 AUTOBOOT.C65* on system disk.

 BOOT U9 Loads & runs BASIC program called

 AUTOBOOT.C65* on disk unit 9.

 BOOT "ml" Load & executes machine language

 program called ML, starting at address

 stored on disk.

BORDER -- Set the exterior border color of the display

 BORDER color

Sets the screen border color to given color. The color must be in the

range (0-15). See the Color Table.

BOX -- Draw a 4-sided graphical shape

 BOX x0,y0, x1,y0, x0,y1, x1,y1 [,solid]

Requires two line segments to be specified, the order of which

determines the shape drawn. The shape is drawn in the currently

specified PEN color, on the currently specified SCREEN. The above

command will draw the following shape:

 |0,<=0 +--------------------+ |1,<=0

 | |

 | |

 |0,<=1 +--------------------+ |1,<=1

But if the order of the coordinates were given as:

 BOX x0,y0, x1,y0, x1,y1, x0,y1

a "bowtie" shape would be drawn. See the sample program at SCREEN.

BSAVE -- Save an area of memory in binary disk file

 BSAVE "[@]filename", Pstart_adr TO Pend_adr [,Bbank] [,Ddrive]

 [<ON|,>Udevice]

BSAVE copies an area of memory into a binary disk file called

"filename", starting at start_adr and ending at end_adr-1 (i.e.

end_adr must be one more than actual last address saved). If a bank

number is not given, the bank given in the last BANK statement will

be used. end_adr must be greater than start_adr, and area to be saved

must be limited to the indicated memory bank. You cannot save data

from more than one bank at a time. start_adr is saved on disk as the

load address. If filename already exists on the designated diskette,

memory is NOT saved and a 'FILE EXISTS' error is reported. Preceding

the filename with an '@'-sign will allow you to overwrite an existing

file, but see the cautions at DSAVE.

 BSAVE "sprites", P(dec("600")) TO P(dec("800")), B0

BUMP -- Sprite collision function

 BUMP (type)

This function return a numeric summary of sprite collisions

accumulated since the last time the BUMP function was used.

You can use the COLLISION command to set up a special routine in your

program to receive control whenever a sprite BUMPs into something, but

a particular COLLISION does not have to be enabled to use BUMP. See

the COLLISION command.

To evaluate sprite collisions, where a BIT position (0-7) in the

numeric result corresponds to a sprite number (0-7):

 BIT position: 7 6 5 4 3 2 1 0

 | | | | | | | |

 BUMP value in binary: 0 0 0 0 0 1 0 1 = 5 decimal

BUMP(1) returns a value representing sprite-to-sprite collisions.

BUMP(2) returns a value representing sprite-to-data collisions.

 X = BUMP(1) Result is X=3 if sprites 0 & 1 collided,

 as shown above. (binary 101 = 5 decimal).

Note that more than one collision can be recorded, in which case you

should evaluate a sprite's position using the RSPPOS function to

figure out which sprite collided with what. BUMP is reset to zero

after each use.

BVERIFY -- Compare a binary disk file to an area of memory

 BVERIFY "filename" [,Paddress] [,Bbank] [,Ddrive] [<ON|,>Udevice]

BVERIFY compares a binary disk file called "filename" to an area of

memory. In direct mode, if the areas contain the same data the message

"OK" is displayed, and if the data differs the message 'VERIFY ERROR'

is displayed.

In program mode, an error is generated if a mismatch is found

otherwise the program continues normally. The comparison starts with

the address given, else it starts at the address stored on disk. The

comparison ends when the last byte is read from the disk file.

If a bank number is not given, the bank given in the last BANK

statement will be used. The ending address is determined by the

length of the disk file. The comparison halts on the first mismatch or

at the end of the file. The area to be compared must be confined to

the indicated memory bank.

 BVERIFY "sprites", P(dec("600")), B0

CATALOG -- see DIR (DIRECTORY) command

CHANGE -- Find text in a BASIC program and change it.

 CHANGE :string1: TO :string2: [,line_range]

 CHANGE "string1" TO "string2" [,line_range]

This is a direct (edit) mode command. CHANGE looks for all occurrences

of string1 in the program, displays each line containing string1 with

the target string highlighted, and prompts the user for one of the

following:

 Y<RETURN> Yes, change it and look for more

 N<RETURN> No, don't change it, but look for more

 *<RETURN> Yes, change all occurrences from here on

 <RETURN> Exit command now, don't change anything

Any character can be used for the string delimiter, but there are side

effects: see comments at FIND command. If the line number range is not

given (see LIST for description of range parameter), the entire

program is searched.

CHAR -- Draw a character string on a graphic screen

 CHAR column, row, height, width, direction, "string" [,charsetadr]

 [*** THIS IS SUBJECT TO CHANGE ***]

CHAR displays text on a graphic screen at a given location. The

character height, width, and direction are programmable. The

parameters are defined as:

 column: Character position:

 For 320 wide screens, 0-39

 For 640 wide screens, 0-79

 row: Pixel line:

 For 200 line screens, 0-199

 For 400 line screens, 0-399

 height: Multiple of 8-bit character height:

 1= 8 pixels high, 2= 16 pixels, etc.

 width: Multiple of 8-bit character width:

 1= 8 pixels high, 2- 16 pixels, etc.

 direction: Bit mask: B0= up

 B1= right

 B2= down

 B3= left

The string can consist of any printable character, as defined by the

VIC character set. Non-text characters are ignored. If the address

of the character set is not given, the upper/lower ROM character set

is used ($29800).

 CHAR 18,96, 1,1,2, "C65D", DEC("9000")

The above example will draw the characters "C65D" in the center of a

320x200 pixel screen using the system's uppercase/graphic character

set.

CHR$ -- Character string function

 CHR$ (value)

This function returns a string of one character having the PETSCII

value specified. This function is the opposite of the ASC function.

It's often used in PRINT strings to output data that is not visible,

such as control codes and escape sequences. Refer to the Table of

PETSCII Character Codes.

 PRINT CHR$(27)"Q"; CHR$(27) is the escape character.

 This statement performs the

 clear-to-end-of-line escape function.

CIRCLE -- Draw a circle on a graphic screen

 CIRCLE x_center, y_center, radius [,solid]

The CIRCLE command will draw a circle with the given radius centered

at (x_center,y_center) on the current graphic screen. The circle will

be filled (i.e., a disc) if SOLID is non-zero.

 CIRCLE 160,100,50

The above example will draw a circle in the center of a 320x200 pixel

screen (160,100) having a radius of 50 pixels. The aspect ratio of the

screen may cause it to appear as an ellipse, however. See also the

ELLIPSE command.

CLOSE -- Close a logical I/O channel

 CLOSE logical_channel_number

This command closes the input/output channel associated with the given

logical_channel_number, established by an OPEN statement. In the case

of buffered output (such as the serial bus or RS232) any data in the

device's buffer will be transmitted before the channel is closed.

Refer to specific I/O operations for details.

The logical_channel_number is required; to close all channels on a

given device, use the DCLOSE command. Note that RUN, NEW, and CLR

commands will initialize the logical channel tables but will not

actually close any channels.

CLR -- Clear program variables

 CLR

This statement initializes BASIC's variable list, setting all numeric

variables to zero and string variables to null. It also initializes

the DATA pointer, BASIC runtime stack pointer (i.e., clears all

GOSUBs, DO/LOOPs, FOR/NEXT loops, etc.), and clears any user functions

(DEF FNx). Any OPEN channels are forgotten (but a CLOSE is not

performed; don't use if there are any open disk output files). A CLeaR

is automatically performed by a RUN or a NEW command.

CMD -- Set default output channel

 CMD logical_channel_number [,string]

CMD changes the default output device, normally the screen, to that

specified. The logical_channel_number can be any previously OPENed

write channel, such as one to a disk file, printer, or RS232.

When redirected via CMD, all output which normally would go to the

screen (such as PRINT commands, LIST output, DIRECTORY lists, etc.)

is sent to another device or file.

The redirection is terminated by CLOSE-ing the CMD channel or

executing a PRINT# to the CMD channel. Some output devices require a

PRINT# to be performed before the CMD channel is closed, such as

printers, to cause the device's buffer to be flushed (i.e.,

displayed).

Any system error will redirect output back to the system default,

normally the screen, but will not flush nor close the output channel.

If the optional string is given, it is output immediately after the

CMD device is established. This feature is normally used to set up

printers (eg., set printer modes via escape codes) or to identify the

output (eg., title printouts).

 OPEN 4,4 OPENS device #4, which is the printer.

 CMD 4 All normal output now goes to the printer.

 LIST The LISTing goes to the printer.

 PRINT#4 Set output back to the screen.

 CLOSE 4 Close the printer channel.

COLLECT -- Check (validate) disk, delete bad files and free lost sectors

 COLLECT [Ddrive] [<ON|,>Udevice]

Refer to the DOS 'V'alidate command. This command will cause the DOS

to recalculate the Block Availability Map (BAM) of the diskette in the

indicated drive, allocating only those sectors being used by valid,

properly closed files. All other sectors are marked as "free" and

improper files are automatically deleted.

Note: COLLECT should be used with extreme care, and MUST NOT be used

on diskettes with special boot sectors or direct access (eg., random)

files. In any case, be sure the diskette has been BACKUP-ed first.

COLLISION -- Setup subroutine to handle special events

 COLLISION type [,linenumber]

 [*** THIS MIGHT CHANGE ***]

COLLISION is used to handle "interrupt" situations in BASIC, such as

sprites bumping into things or lightpen triggers. When the specified

situation occurs, BASIC will finish processing the currently executing

instruction and perform an automatic GOSUB to the linenumber given.

When the subroutine terminates (it must end with a RETURN) BASIC will

resume processing where it left off. Interrupt handling continues

until a COLLISION of the same type but without any linenumber is

specified. More than one type interrupt may be enabled at the same

time, but only one interrupt can be handled at a time (i.e., no

recursion and no nesting of interrupts). The type interrupt can be:

 1 = Sprite to sprite collision

 2 = Sprite to display data collision

 3 = Light pen

Note that what caused an interrupt may continue causing interrupts for

some time unless the situation is altered or the interrupt is

disabled. This is especially true for BASIC, which is slow to respond

to interrupts. Use the BUMP and RSPPOS functions to evaluate the

results of sprite collisions, and the LPEN function to evaluate the

position of a light pen.

 10 COLLISION 1,90

 20 SPRITE 1,1 : MOVSPR 1,100,100 : MOVSPR 1,0#5

 30 SPRITE 2,1 : MOVSPR 2,100,150 : MOVSPR 2,180#5

 40 DO : PRINT : LOOP

 50 END

 90 PRINT"BUMP! ";:RETURN

In this example, sprite-to-sprite collisions are enabled (line 10),

and two sprites are turned on, positioned, and made to move (lines

20 & 30). One sprite moves up and the other moves down while the

program does nothing other than print blank lines to the screen (line

40). When the sprite collide, the subroutine at line 90 is called, it

prints "BUMP!", and the computer goes back to printing blank lines.

COLOR -- Enable or disable screen color (character attribute) control

 COLOR <ON|OFF>

COLOR turns on or turns off the screen editor's attribute handler.

When colors are turned off, whatever character attributes are being

currently displayed (text color, underline, flash, etc.) are "stuck".

The main purpose for doing this is to speed up screen handling

(writing to the screen or scrolling the screen) about two times, since

the screen editor no longer has to manipulate the attributes. Note

that only FOREGROUND colors (and special VIC attributes) are affected.

To change screen colors, use the following commands:

 FOREGROUND color# Set Foreground color (text)

 HIGHLIGHT color# Set Highlight color (text)

 BACKGROUND color# Set VIC background color

 BORDER color# Set VIC border color

CONCAT -- Concatenate (merge) two sequential disk files

 CONCAT "file1"[,Ddrive1] TO "file2"[,Ddrive2] [<ON|,>Udevice]

CONCAT merges two SEQuential files, appending the contents of "file1"

to "file2". Upon completion, "file2" contains the data of both files,

and "file1" is unchanged. Both files must exist on drives of the the

same unit, and pattern matching is not allowed.

Some disk drives handle CONCAT differently; refer to the DOS manual

for specific details.

CONT -- Continue program execution

 CONT

CONTinue is used to re-start a BASIC program that was halted by a STOP

or END statement, or interrupted by the <STOP> key. The program will

resume at the statement following the STOP or END instruction, or at

the statement after the one that was interrupted by the <STOP> key.

CONT is typically used during program debugging. You can look at and

alter variables while the program is halted.

Programs halted as a result of an untrapped error condition cannot be

CONTinued. Programs that have been edited in any way cannot be

restarted. Any error condition that occurs since the program was

halted will prevent it from being restarted. Programs that cannot be

restarted via CONT can be restarted with a GOTO, as long as you don't

need to resume execution in the middle of a line of commands and you

recall where the halt occurred.

Note that the <STOP> key can interrupt some commands in mid-execution,

such as file I/O, drawing commands, etc. In such cases, programs may

not run correctly after a CONTinue.

COPY -- Copy disk files

 COPY ["file1"][,Dd1] TO ["file2"][,Dd2] [<ON|,>Udevice]

COPYs a disk file to another disk file. On single drive units, the

filenames must be different. On dual drive units, copying can be

done between two drives on the same unit, and the filenames can be the

same or different. Pattern matching can be used. Copying files from

one unit to a different unit cannot be done: use a copy utility

program in such cases. Only legal type files can be copied; direct

access data, boot sectors, and partitions cannot be copied.

Refer to the DOS manual for your disk drive specific details.

 COPY "file1" TO (F2$) Copies "file1" to another file

 whose name is in F2$ on the

 same drive. Names must differ.

 COPY "file1",D0 TO D1,U9 Copies "file1" from unit 9

 drive-0 to unit 9 drive-1.

 COPY D0 TO D1 Copies all files from drive-0

 to drive-1 on the same unit.

 COPY "???.src",D0 TO "*",D1 Copies all files on drive-0

 matching the pattern to a file

 of the same name on drive-1.

COS -- Cosine function

 COS (expression)

This function returns the cosine of X, where X is an angle measured

in radians. The result is in the range -1 to 1.

 X = COS (pi) Result is X=-1

To get the cosine of an angle measured in degrees, multiply the

numeric expression by pi/180.

CUT -- Cut a graphic area into a temporary structure

 CUT x,y,dx,dy

 [*** NOT YET IMPLEMENTED ***]

DATA -- Define program constant data to be accessed by READ command

 DATA [list of constants]

DATA statements store lists of data that will be accessed during

program execution by a READ statement. The DATA statement can appear

anywhere in the program, and it is never executed. BASIC keeps a

pointer to the earliest un-READ DATA statement, and data is read

sequentially from first item in a DATA statement to the last item,

from the earliest DATA statement in the program to the last DATA

statement in the program.

The list of constants can contain both numeric data (integer or

floating point) and string data, but cannot contain expressions which

must be evaluated (such as 1+2, DEC("1234"), or CHR$(13)). Items are

separated by commas. String data need not be enclosed in quotes unless

it contains certain characters, such as spaces, commas, colons,

graphic characters, or control codes. If two commands have nothing

between them, the data will be READ as 0 if numeric or a null string.

The RESTORE command allows you to position BASIC's data pointer to a

specific line number. If the program tries to read more DATA than

exists in the program, an 'OUT OF DATA' error results. If a READ

statement's variable type does not agree with the DATA being read, a

'TYPE MISMATCH' error results.

 DATA 100, 200, FRED, "HELLO, MOM", , 3.14, ABC123, -1.7E-9

DCLEAR -- Clear all open channels on disk drive

 DCLEAR [Ddrive] [<ON|,>Udevice]

DCLEAR sends the indicated disk drive an 'I'nitialize command. This

clears all open channels, closes all open files, and causes the DOS to

re-read the diskette's Block Allocation Map (BAM). Note that DCLEAR

DOES NOT close open channels on the computer's side (see the DCLOSE

command). There are some other side affects caused by this command

with different types of drives -- refer the DOS manual for your disk

drive for specific details.

DCLOSE -- Close a disk file, or close all channels on a device

 DCLOSE [#logical_file_number] [<ON|,>Udevice]

DCLOSE is intended to close a file opened with the DOPEN command.

Specific files can be closed by specifying a logical_file_number, or

all files on a particular drive can be closed by not specifying a

particular logical_file_number.

It is possible to close channels on non-disk devices with this command

by specifying only the device number.

 DCLOSE#1 Closes the file associated with logical

 logical file number 1.

 DCLOSE Closes all files currently open on the

 default system drive.

 DCLOSE U(U2) Closes all channels open to device U2.

DEC -- Decimal value function

 DEC (hex_string)

This function return the decimal value of a string representing a

hexadecimal number in the range "0000" to "FFFF". The result is in

the range 0-65535. If the string contains a non-hexadecimal digit or

is more than four (4) characters in length an 'ILLEGAL QUANTITY'

error is reported.

 VIC = DEC("D000") Result is VIC=53248,

 the address of the VIC chip

DEF FN -- Define function

 DEF FN name(numeric_variable) = numeric_expression

Define a user-written numeric function. The DEF FNx statement must be

executed before the function can be used. Once a function has been

defined, it can be used like any other numeric variable. The function

name is the letters FN followed by any legal floating point

(non-integer) variable name. A function can be defined only in a

program.

The numeric_variable is a "dummy" variable. It names the variable the

numeric_expression which will be replaced when the function is used.

It's not required to be used in the numeric_expression, and its value

won't be changed by the function call.

The numeric_expression performs the calculations of the function. It

is any legal numeric expression that fits on one line. Variables used

in the expression have their value at the time the function is used.

Functions can be used only by the program which defines them. If one

program chains to another program, the first program's functions

cannot be used (usually a 'SYNTAX ERROR' results). Similarly, if the

program is moved in any way after the function is defined, the

function cannot be used.

10 DEF FN R(MAX) = INT(RND(0)*MAX)+1

20 INPUT "MAXIMUM"; MAX

30 PRINT FN R(MAX)

In this example, we've defined a function which will return a pseudo

random number between 1 and whatever MAX is. Instead of using the

expression INT(RND(0)*MAX)+1 every time a random number is needed, we

can now use FN R(MAX). When we use FN R(x), the value of 'x' will be

substituted everywhere MAX is used in the function definition.

10 DEF FN I(X) = X+1

20 DEF FN L(Z) = LEN(A$)

30 DEF FN AVG(N) = (TOT*CNT+N)/(CNT+1)

DELETE -- Delete lines of BASIC program, or

 Delete disk files

 DELETE [startline] [-[endline]]

 DELETE "filespec" [,Ddrive] [<ON|,>Udevice] [,R]

There are two forms of DELETE. The first form is used in direct mode

to remove lines from a BASIC program:

 DELETE 75 Deletes line 75

 DELETE 10-50 Deletes line 10 through 50 inclusive.

 DELETE -50 Deletes all lines from the beginning of

 the program up to and including line 50.

 DELETE 75- Deletes all lines from 75 to the end of

 the program.

The second form is used in program or direct mode to delete a disk

file. See the SCRATCH command.

 DELETE "myfile" Deletes the file MYFILE on the system drive.

DIM -- Declare array dimensions

 DIM variable(subscripts) [,variable(subscripts)]...

Before arrays of variables can be used, the program must first execute

a DIM statement to establish DIMensions of that array (unless there

are 11 or fewer elements in the array). The statement DIM is followed

by the name of the array, which may be any legal variable name. Then,

enclosed in parentheses, put the number (or numeric variable) of

elements in each dimension. An array with more than one dimension is

called a matrix. Any number of dimensions may be used, but keep in

mind that the whole list of variables being created takes up space in

memory, and it is easy to run out of memory if too many are used. To

figure the number of variables created with each DIM, multiply the

total number of elements in each dimension of the array. Note: each

array starts with element 0, and integer arrays take up 2/5ths of the

space of floating point arrays.

More than one array can be dimensioned in a DIM statement by

separating the arrays by commas. If the program executes a DIM

statement for any array more than once, the message 'REDIM'D ARRAY' is

reported. It is good programming practice to place DIM statements

near the beginning of the program.

 10 DIM A$(40),B7(15),CC%(4,4,4)

 | | |

 41 elements 16 elements 125 elements

DIRECTORY -- List the files of a diskette

DIR

 DIRECTORY ["filespec"] [,R] [,Ddrive] [<ON|,>Udevice]

A directory is a list of the names of the files that are on a

diskette. The directory listing consists of the name of the diskette,

the names, sizes, and filetypes of all the files on a diskette, and

the remaining free space on the diskette. The filespec is used to

specify a pattern match string to view selected files. Not all disk

drives support the same options or filespecs; refer to your DOS manual

for details. The C64DX allows you to print DIR listings without having

to 'load' the directory; see example below.

The commands DIR, DIRECTORY, and CATALOG have the exact same function.

They can be used in direct or program mode.

 DIRECTORY List all files on the diskette

 in the default system drive

 DIR "*.src", U9 Lists the all the files ending with

 ".src" on unit 9.

 DIR "*,=p",R List all the deleted but recoverable

 PRG-type files on the system drive.

 OPEN 4,4:CMD 4:DIR:CLOSE 4 Print DIR listing to printer unit 4.

The following program can be used to load the directory into variables

for use within a program. In this case, the filename is simply printed

to the screen:

 10 OPEN 1,8,0,"$0:*,P,R" open dir as a file

 20 : IF DS THEN PRINT DS$: GOTO 100 abort if error

 30 GET#1,X$,X$ trash load address

 40 DO read each line

 50 : GET#1,X$,X$: IF ST THEN EXIT trash links, check EOF

 60 : GET#1,BL$,BH$ get file size

 70 : LINE INPUT#1, F$ get filename & type

 80 : PRINT LEFT$(F$,18) print filename

 90 LOOP loop until EOF

 100 CLOSE 1 close dir

DISK -- Send a disk command

 DISK "command_string" [<ON|,>Udevice]

The DISK command is used to send special commands to the DOS via the

disk drive's command channel. The DISK command is analogous to the

following BASIC code:

 OPEN 1,n,15: PRINT#1,"command_string": CLOSE 1

Not all disk drives understand the same commands. Refer to your DOS

manual for commands and command syntax for your drive. Note that the

drive number, if any, must be included in the command_string.

 DISK "U0>10" Renumber system drive to 10.

 DISR "U0>V"+chr$[0) Turn off write verify

 DISK "S0:file",U(n) Scratch "file" on unit n

DLOAD -- Load a BASIC program file from disk

 DLOAD "filename" [,Ddrive] [<ON|,>Udevice]

This command copies a BASIC program from disk into the BASIC program

area of the computer. It can then be edited, DSAVEd, or RUN.

Used in program mode, it overlays the current program in memory and

begin execution automatically at the first line of the new program.

Variable definitions will be left intact, but any open data files and

the disk command channel will be automatically closed. This is called

CHAINING.

See also RUN. Use BLOAD to load binary or machine language data.

 DLOAD "myprogram" Searches the default system disk drive

 for the BASIC program "myprogram",

 loads it, and relinks it.

 DLOAD (F$),U9 LOADs a program whose name is in F$

 from disk unit 9.

DMA -- Perform a DMA operation

DMA command [,length,source(l/h/b),dest(l/h/b),subcmd,mod(l/h) [,...]]

 [*** THIS COMMAND IS SUBJECT TO CHANGE ***]

The DMA command defines and executes a Direct Memory Access operation.

The parameters are used to construct a DMA list, which is then passed

to the DMA processor for execution. Refer to the DMA chip

specification for details. Chained DMA commands are not allowed, but

multiple DMA commands can be given and the DMA handler will set up

and execute each one, one at a time. Refer to the system memory map to

find out where things are.

Because this command directly accesses system memory, extreme care

should be taken in its use. Changing the wrong memory locations can

crash the computer (press the reset button to reboot).

 DMA 3, 2000, ASC("+"), 0, DEC("800"), 0 Fill screen with '+'

 DMA 0, 2000, DEC("800"), 0, DEC("8000"), 1 Copy screen to $18000

DMODE -- Set graphic display mode

 DMODE jam, comp, inverse, stencil, style, thickness

 [*** THIS COMMAND IS SUBJECT TO CHANGE ***]

 jam 0-1

 complement 0-1

 inverse 0-1

 stencil 0-1

 style 0-3

 thickness 1-8

DO/LOOP/WHILE/UNTIL/EXIT -- Program loop definition and control

 DO [UNTIL boolean_expression | WHILE boolean_expression]

 .

 . statements [EXIT]

 .

 LOOP [UNTIL boolean_expression | WHILE boolean_expression]

Performs the statements between the DO statement and the LOOP

statement. If no UNTIL or WHILE modifies either the DO or the LOOP

statement, execution of the intervening statements continues

indefinitely. If an EXIT statement is encountered in the body of a DO

loop, execution is transferred to the first statement following the

nearest LOOP statement. Do loops may be nested, following the rules

defined for FOR-NEXT loops. If the UNTIL parameter is used the program

continues looping until the boolean argument is satisfied (becomes

true). The WHILE parameter is basically the opposite of the UNTIL

parameter: the program continues looping as long as the boolean

argument is TRUE. An example of a boolean argument is A=1, or G>65.

 DO UNTIL X=0 or X=1 This loop will continue

 : statements until X=0 or X=1. If

 LOOP X=0 or 1 at beginning

 the loop won't execute.

 10 A$="": DO GETKEY A$: LOOP UNTIL A$="Q" This will loop until

 the user types 'Q'

 10 DOPEN#1,"FILE" This program will

 20 C=0 count the number of

 30 DO: LINEINPUT#1,A$: C=C+1: LOOP UNTIL ST lines in FILE

 40 DCLOSE#1

 50 PRINT"FILE CONTAINS";C;" LINES."

DOPEN -- Open a disk file

DOPEN#lf,"filename[,<S|P>]"[,L[reclen]] [,W] [,Ddrive] [<ON|,>Udevice]

This command OPENs a file on disk for reading or writing. If is the

logical file number, which you will use in PRINT#, INPUT#, GET#,

RECORD#, and DCLOSE# commands to reference the channel to your file.

The filename is required. The defaults are to OPEN a SEQuential file

for Reading, in which case the file must exist or a 'FILE NOT FOUND'

error results. To create an file and write to it, use the 'W'rite

option. 'FILE EXISTS' error is report if an output file already

exists. To read or write a RELative file, use the 'L'ength option. The

'reclen' record length is required only when creating a relative file.

For more information regarding Relative files, see the RECORD command

and refer to your DOS manual. See also APPEND.

See the OPEN command for a discussion about channel and device

numbers.

DOPEN#1,"readfile" Opens sequential READFILE for reading.

DOPEN#1,"writefile",W Creates & opens seq WRITEFILE for writing.

DOPEN#1,"file,P",U(u) Opens a PRoGram type file for reading on unit U

DOPEN#1,(rf$),L Open existing relative file whose name's in RF$

DOPEN#a,"rel",L80 Create a relative file with record length of 80

DPAT -- Set graphic draw pattern

 DPAT type [, # bytes, byte1, byte2, byte3, byte4]

 [*** THIS COMMAND IS SUBJECT TO CHANGE ***]

 type 0-63

 # bytes 1-4

 byte1 0-255

 byte2 0-255

 byte3 0-255

 byte4 0-255

DSAVE -- Save a BASIC program into a disk file

 DSAVE "[@]filename" [,Ddrive] [<ON|,>Udevice]

This command copies a BASIC program in the computer's BASIC memory

area into a PRoGram-type disk file. If the file already exists, the

program is NOT stored and the error message 'FILE EXISTS' is reported.

If the filename is preceded with an '@', then if the file exists it

will be replaced by the program in memory. Because of some problems

with the 'save-with-replace' option on older disk drives, using this

option is not recommended if you do not know what disk drive is being

used. Use the DVERIFY to compare the program in memory with a program

on disk.

To save a binary program, use the BSAVE command.

 DSAVE "myprogram" Creates the PRG-type file MYPROGRAM

 on the default system disk and copies

 the BASIC program in memory into it.

 DSAVE "@myprogram" Replaces the PRG-type file MYPROGRAM

 with a new version of MYPROGRAM. If

 MYPROGRAM doesn't exist, it's created.

 DSAVE (F$),U9 Saves a program whose name is in F$

 on disk unit 9.

DVERIFY -- Compare a program in memory with one on disk

 DVERIFY "filename" [,Ddrive] [<ON|,>Udevice]

This command is just like a DLOAD, but instead of LOADing the BASIC

program file into computer memory the data is read from disk and

compared to computer memory. If there's any difference at all a

'VERIFY ERROR' is reported.

Note: If the BASIC program in memory is not located at the same

address as the version on disk was SAVEd from, the files will not

match even if the program is otherwise identical. The comparison ends

when the last byte is read from the disk file.

Use the BVERIFY command to compare memory with binary files.

 DVERIFY "myprogram"

Good: SEARCHING FOR 0:myprogram Bad: SEARCHING FOR 0:myprogram

 VERIFYING VERIFYING

 OK ?VERIFY ERROR

ELLIPSE -- Draw an ellipse on a graphic screen

 ELLIPSE x_center, y_center, x_radius, y_radius [,solid]

The ELLIPSE command will draw an ellipse with the given radii centered

at (x_center,y_center) on the current graphic screen. The ellipse will

be filled (i.e., a disc) if SOLID is non-zero.

 ELLIPSE 160,100,65,50

The above example will draw an ellipse in the center of a 320x200

pixel screen (160,100) having radii of (65,50) pixels. The aspect

ratio of the screen may cause it to appear as an circle, however. See

also the CIRCLE command.

ELSE -- See IF/THEN/ELSE

END -- Define the end of program execution

 END

The END statement terminates program execution. It does not close

channels or files, and it does not clear any variables or reset any

pointers. An END statement does not need to be put at the last line of

a program.

The CONTinue command can be used to resume execution with the next

statement following the END statement. See also the STOP command.

ENVELOPE -- Define musical instrument envelopes

 ENVELOPE n, [,[atk] [,[dec] [,[sus] [,[rel] [,[wf] [,pw]]]]]]

 n............... Envelope number (0-9)

 atk Attack rate (0-15)

 dec Decay rate (0-15)

 sus Sustain rate (0-15)

 rel Release rate (0-15)

 wf Waveform: 0 = triangle

 1 = sawtooth

 2 = pulse (square)

 3 = noise

 4 = ring modulation

 pw Pulse width (0-4095)

 [*** THIS COMMAND IS SUBJECT TO CHANGE ***]

A parameter that is not specified will retain its current value. Pulse

width applies to pulse waves (wf=2) only and is determined by the

formula (pwout = pw/40.95 %), so that pw = 2048 produces a square wave

and values of 0 or 4095 produce constant DC output. The C64DX

initializes the ten (10) tune envelopes to:

 n A D S R wf pw instrument

 ------------------ -------------

 ENVELOPE 0, 0, 9, 0, 0, 2, 1536 piano

 ENVELOPE 1,12, 0,12, 0, 1 accordion

 ENVELOPE 2, 0, 0,15, 0, 0 calliope

 ENVELOPE 3, 0, 5, 5, 0, 3 drum

 ENVELOPE 4, 9, 4, 4, 0, 0 flute

 ENVELOPE 5, 0, 9, 2, 1, 1 guitar

 ENVELOPE 6, 0, 9, 0, 0, 2, 512 harpsichord

 ENVELOPE 7, 0, 9, 9, 0, 2, 2048 organ

 ENVELOPE 8, 8, 9, 4, 1, 2, 512 trumpet

 ENVELOPE 9, 0, 9, 0, 0, 0 xylophone

ERASE -- Delete disk files

 ERASE "filespec" [,Ddrive] [<ON|,>Udevice] [,R]

This command is identical to DELETE and SCRATCH. See the SCRATCH

command for details.

 ERASE "myfile" Deletes the file MYFILE on the system drive.

ERR$ -- Error message function

 ERR$ (error_number)

This function returns a string which is the BASIC error message

corresponding to the given error_message. If the given number is too

small (less than 1) or too large (greater than 41) an 'ILLEGAL

QUANTITY' error is reported.

This function is usually used to display a BASIC error condition in a

TRAP routine, using the BASIC error word ER as the error_number.

Note that when ER=-1, no BASIC error has occurred and ERR$(-1) results

in an 'ILLEGAL QUANTITY' error.

See the example at TRAP.

EXIT -- See DO/LOOP/WHILE/UNTIL/EXIT

EXP -- Function to return e^x

 EXP (number)

This function returns the numeric value of e (2.71828183), the base of

natural logarithms) raised to the power of given number. If the

number is greater than 88.0296919 an 'OVERFLOW' error is reported.

 X = EXP(4) Result is X=54.5981501

FAST -- Set system speed to 3.58MHz

FAST is the default state of the system. FAST is used to restore this

state following direct access of "slow" I/O devices such as the SID

sound chips.

FETCH -- (see the DMA command)

FILTER -- Define sound filter parameters

 FILTER [freq] [,[lp] [,[bp] [,[hp] [,res]]]]

 freq Filter cut-off frequency (0-2047)

 lp Low pass filter on (1) off (0)

 bp Band pass filter on (1), off(0)

 hp High pass filter on (1), off(0)

 res Resonance (0-15)

 [*** THIS COMMAND IS SUBJECT TO CHANGE ***]

Unspecified parameters result in no change to the current value. The

filter output modes are additive. For example, how low pass and

high pass filters can be selected to produce a notch (or band reject)

filter response. For the filter to have an audible effect at least

one filter output mode must be selected and at least one voice must be

routed through the filter.

FIND -- Find text in a BASIC program.

 FIND :string: [,line_range]

 FIND "string" [,line_range]

This is a direct (edit) mode command. FIND looks for all occurrences

of string in the program and displays each line containing string,

with string highlighted. Use the <C=> key to slow the display, or the

<NO-SCROLL> key to pause the display. Press <STOP> to cancel.

Any character can be used for the string delimiter, but there are side

effects. Using a non-quote delimiter will cause the string to be

tokenized, and FIND will find only tokenized strings in the program

that match. Using a quote character as the delimiter will cause the

string to be interpreted as plain PETSCII, and any matches found will

therefore be plain PETSCII. Searching for some tokens such as DATA

statements may require the use of colons as delimiters due to the

special affect these commands have upon the interpreter.

If the line number range is not given (see LIST for description of

range parameter), the entire program is searched.

FN xx -- User defined function

 FN xx (expression)

The result of this numeric function is determined by the BASIC program

in a DEF FN statement. See the example at DEF FN.

FOR/TO/STEP/NEXT -- Program loop definition and control

 FOR index = start TO end [STEP increment]

 |

 NEXT index [,index]

This command group performs a series of instructions a given number of

times. The loop index is a floating point (non-integer) variable

which will initially be set to the start value and be incremented by

the STEP increment when the NEXT statement is encountered. The loop

continues until the index exceeds the end value at the NEXT statement.

The start, end, and increment values can be numeric variables or

expressions. If the STEP increment is not specified, it is assumed to

be one (1). The STEP increment can be any value, positive, negative,

or non-integer. If the STEP increment is negative, the loop continues

until the index is less than the end value at the NEXT statement.

Note that, regardless of the start, end, or increment values, the loop

will always execute at least once. The index can be modified within

the loop, but it is bad practice to do so. It is also bad practice to

GOTO a line inside a loop structure, or to similarly jump out of a

loop structure (which can cause an 'OUT OF MEMORY' error).

Loops may be nested. If too many are nested, an 'OUT OF MEMORY' error

is reported (depends upon stack size, room for about 28 nested loops).

The index variable can be omitted from the NEXT statement, in which

case the NEXT will apply to the most recent FOR statement. If a NEXT

statement is encountered and there is no preceding FOR statement, the

error 'NEXT WITHOUT FOR' is reported.

 10 FOR L = 1 TO 10

 20 PRINT L

 30 NEXT L

 40 PRINT "I'M DONE! L = "L

This program prints the numbers from one to ten, followed by the

message I'M DONE! L = 11.

 10 FOR L = 1 TO 100

 20 FOR A = 5 TO 11 STEP .5

 30 NEXT A

 40 NEXT L

This program illustrates a nested loop.

FOREGROUND -- Set the text color of the display

 FOREGROUND color

Sets the text color to the given color index. Color must be in the

range (0-15). See the Color Table. COLOR must be ON (see the COLOR

command).

FRE -- Free byte function

 FRE (x)

This function returns the number of available ("free") bytes in a

specified area.

 PRINT FRE(0) Shows the amount of memory left in the program area,

 C64DX bank 0

 X = FRE(1) X= the amount of available memory in variable area

 C64DX bank 1. This causes a "garbage collect" to

 occur, a process which compacts the string area.

 X = FRE(2) X= the number of expansion RAM banks present.

GCOPY -- Copy a graphic area

 [*** NOT YET IMPLEMENTED ***]

GENLOCK -- Enable or disable video sync mode & colors

 GENLOCK ON [,color#]...

 GENLOCK OFF [,color#,R,G,B]...

To enable video sync mode and specify which colors are affected, use

the GENLOCK ON command, and list the palette color indices (0-255)

which will display external video.

To disable video sync mode and restore the associated palette colors

use the GENLOCK OFF command, and list the color index and its RGB

values to restore them (see the SET PALETTE command for details). Also

see the PALETTE RESTORE command.

GET -- Get input data from the keyboard

 GET variable_list

The GET statement is a way to get data from the keyboard one character

at a time. When the GET is executed, the character that was typed is

received. If no character was typed, then a null (empty) character is

returned, and the program continues without waiting for a key. There

is no need to hit the <RETURN> key, and in fact the <RETURN> key can

be received with a GET. The word GET is followed by a variable name,

usually a string variable. If a numeric were used and any key other

than a number was hit, the program would stop with an error message.

The GET statement may also be put into a loop, checking for an empty

result, that waits for a key to be struck to continue. The GETKEY

statement could also be used in this case. This statement can only be

executed within a program.

 10 DO: GET A$: LOOP UNTIL A$ ="A"

 This line waits for the A key to be pressed to continue.

GETKEY -- Get input character from keyboard (wait for key)

 GETKEY variable_list

The GETKEY statement is very similar to the GET statement. Unlike the

GET statement, GETKEY waits for the user to type a character on the

keyboard. This lets it be used easily to wait for a single character

to be typed. This statement can only be executed within a program.

 10 GETKEY A$

This line waits for a key to be struck. Typing any key will continue

the program.

GET# -- Get input data from a channel (file)

 GET# logical_channel_number, variable_list

Used with a previously OPENed device or file to input one character at

a time. Otherwise, it works like the GET statement. This statement can

only executed within a program.

 10 GET#1,A$

GO64 -- Exit C64DX mode and switch to C64 mode

 GO64

This statement switches from C64DX mode to C64 mode. The question 'ARE

YOU SURE?' (in direct mode only) is posted for the user to respond to.

If Y and return is typed then the currently loaded program is lost and

control is given to C64 mode. This statement can be used in direct

mode or within a program.

GOSUB -- Call a BASIC subroutine

 GOSUB line

This statement is like the GOTO statement, except that the computer

remembers from where it came. When a line with a RETURN statement is

encountered, the program jumps back to the statement immediately

following the GOSUB. The target of a GOSUB statement is called a

subroutine. A subroutine is useful if there is a section of the

program that can be used by several different parts of the program.

Instead of duplicating the section over and over, it can be set up as

a subroutine and called with a GOSUB statement from different parts of

the program. This also make the main part of your program much more

readable. See also the RETURN statement.

Variables are shared with the main program and all subroutines. You

can pass information to, and get information back from, subroutines

by using variables as messengers.

GOSUB statements can be nested. That is, one subroutine can call

another subroutine, and the computer automatically keeps track of

all the calls. It's important not to jump into or out of subroutines

since this can confuse the computer. If too many GOSUBs are nested

(usually cause by jumping out of them) an 'OUT OF MEMORY' error is

reported because the computer ran out of room to keep track of all

the calls.

 10 DIR : GOSUB 100 show directory, check status

 20 GOSUB 200 print gap

 30 LIST "PROGRAM": GOSUB 100 show listing, check status

 40 GOSUB 200 print gap

 50 etc...

 90 END

 99 :

 100 REM SUBROUTINE TO CHECK DISK STATUS

 110 IF DS THEN GOSUB 200: PRINT "DISK ERROR: ";DS$

 120 RETURN

 199 :

 200 REM SUBROUTINE TO PRINT A SPACER ON THE SCREEN

 210 PRINT

 220 FOR I=1 TO 39: PRINT"-";: NEXT

 230 PRINT

 240 RETURN

GOTO -- Transfer program execution to specified line number

 GOTO line_number

 GO TO line_number

After a GOTO statement is executed, the next line to be executed will

be the one with the line number following the word GOTO. When used in

direct mode, GOTO line number allows starting of execution of the

program at the given line number without clearing the variables.

 10 PRINT"COMMODORE"

 20 GOTO 10

The GOTO in line 20 makes line 10 repeat continuously until STOP is

pressed.

GRAPHIC -- select graphic mode

 GRAPHIC CLR

 GRAPHIC command# [,args]

Basically this is a modified C64-type SYS command, minus the address.

In the C64DX system, this will represent the ML interface, not the

BASIC 10.0 interface which is implemented in the development system.

 [*** THIS COMMAND IS SUBJECT TO CHANGE ***]

GRAPHIC CLR initializes (warm-starts) the BASIC graphic system. It

clears any existing graphic modes, screens, etc. and allows a program

to commence graphic operations from scratch.

HEADER -- Format a diskette

 HEADER "diskname" [,Iid] [,Ddrive] [<ON|,>Udevice]

The HEADER command prepares a new diskette for use, sometimes called

FORMATting a diskette. There are two types of "newing" a diskette -- a

long form and a quick (or short) form. You must use the long form when

preparing a new diskette for its first use. Thereafter you can use the

quick form.

WARNING: Formatting a diskette (long or short) will destroy all

existing data on the diskette! In direct mode, you are asked to

confirm what you are doing with 'ARE YOU SURE?'. Type 'Y' and press

return to proceed, or TYPE ANY OTHER CHARACTER AND PRESS RETURN TO

CANCEL the command. In program mode there is no confirmation prompt.

The long HEADER form requires a diskname and an ID. The diskette will

be completely (re)sectored, zeros written to all blocks, and a new

system track (directory, BAM, etc.) will be created.

 HEADER "newdisk",I01 prepares a new diskette

The short HEADER form is performed when the ID option is omitted. The

diskette is assumed to have been previously formatted, and only a new

system track (directory, BAM, etc.) is installed. This is roughly

equivalent to deleteing all the files, but much quicker.

 HEADER "makelikenew" re-news an working diskette

The diskname is limited to 16 characters and the ID string to two

characters. The same rules apply for the diskname as for a filename.

Some Disk Systems use the ID string to tell if you have swapped a

diskette in a drive, so it's recommended that the ID string be unique

for each of your diskettes. Some more examples:

 HEADER "QUICK"

 HEADER "MYDISK", I23

 HEADER "RECS", I"FB", U9

 HEADER (FILES), I(ID$), U(UNIT)

HELP -- Show the BASIC line that cause the last error

 HELP

The HELP command is used after an error has been reported in a

program. When HELP is typed, the line where the error occurred

listed, with the portion containing the error highlighted. Print

ERR$(ER) for the error message, and print EN or EL for the error

number and error line, respectively. HELP can be used in direct mode

or in program mode. Note that, in the case of many I/O errors, there

is no associated BASIC error. Check ST or DS$ errors in these cases.

HEX$ -- Hexadecimal value function

 HEX$ (decimal_expression)

This function returns a 4-character string that represents the

hexadecimal value of the numeric decimal expression. The expression

must be in the range (0-65535, $0000-$FFFF hex) or an 'ILLEGAL

QUANTITY' error is reported.

 PRINT HEX$(10) The string "000A" is printed.

 PRINT RIGHT$(HEX$(10),2) The string "0A" is printed.

HIGHLIGHT -- Set the text highlight color of the display

 HIGHLIGHT color

Sets the highlight color to the given color index. The color value

must be in the range (0-15). See the Color Table. COLOR must be ON

(see the COLOR command). The highlight color is used in HELP messages

and FIND/CHANGE strings.

IF/THEN/GOTO/ELSE -- Conditional program execution

 IF expression <GOTO line | THEN then_clause> [:ELSE else_clause]

IF...THEN lets the computer analyze a BASIC expression preceded by IF

and take one of two possible courses of action. If the expression is

true, the statement following THEN is executed. This expression can be

any BASIC statement. If the expression is false, the program goes

directly to the next line, unless an ELSE clause is present. The ELSE

clause, if present, must be in the same line as the IF-THEN part. When

an ELSE clause is present, it is executed when the THEN clause isn't

executed. In other words, the ELSE clause executes when the expression

is FALSE. See BEGIN/BEND to spread the IF statement out over several

lines. An ELSE statement is matched to the closest THEN statement in

the case of nested IF/THEN statements.

The expression being evaluated may be a variable or formula, in which

case it is considered true if nonzero, and false if zero. Usually

expressions involve relational operators =, <, >, <=, >=, <>.

 50 IF X>0 THEN PRINT "X>0": ELSE PRINT "X<=0"

If X is greater than 0, the THEN clause is executed, and the ELSE

clause isn't. If X is less than or equal to 0, the ELSE clause is

executed and the THEN clause isn't.

INPUT -- Get input from the keyboard

 [LINE] INPUT ["prompt"<,l;>] variable_list

The INPUT statement pauses the BASIC program, prints the prompt string

if present, prints a question mark and a space, and waits for data to

be typed by the user, terminated by a return character. If the prompt

string ends with a comma instead of a semicolon, a question mark and

space is not printed.

Input is gathered and assigned to variables in the variable_list. The

type of variable must match the type of input typed or a 'TYPE

MISMATCH' error is reported. Separate data items typed by the user

must be separated with commas. String data with imbedded spaces or

commas must be surrounded with quotes. If insufficent data to satisfy

the variable-list is typed, two question marks are displayed by the

computer to prompt for additional data to be input. If the computer

does not understand the input (such as the user typing cursor up or

down keys) the computer responds with the message 'REDO FROM START?'

and waits for acceptable data to be entered. Input is limited to 160

characters (two screen lines in 80-column mode), which is the size of

the input buffer.

The INPUT statement can only be executed from within a program.

LINE INPUT allows the program to input a string which includes any

PETSCII character (including colons, commas, imbedded spaces, etc.)

up to but not including a null or return character. There should be

only one string-type variable name in the variable_list in this case,

but if there are more the computer prompts as usual with two question

marks for more data to assign to the additional variables.

 10 INPUT "WHAT'S YOUR FIRST NAME AND AGE"; NA$,A

 20 PRINT "YOUR NAME IS ";NAS;" AND YOU ARE";A;" YEARS OLD"

The above INPUT is the traditional BASIC form.

 10 LINE INPUT "WHAT'S YOUR ADDRESS"; AD$

 20 PRINT "YOUR ADDRESS IS: ";AD$

The above INPUT allows an entire line of data to be assigned to a

string variable, including commas and other common punctuation marks.

 10 INPUT "ENTER YOUR NAME HERE: ", NA$

The above INPUT suppresses the traditional '? ' prompt by using a

comma instead of a semicolon after the prompt string. To suppress the

'?' without a prompt string, make the prompt string null.

INPUT# -- Input data from an I/O channel (file)

 [LINE] INPUT#logical_channel_number, variable_list

The INPUT# command works like the INPUT command, except no prompt

string is allowed and input is gathered from a previously OPENed

channel or file. This command can only be used in a program.

The logical channel number is the number assigned to the device (file)

in an OPEN (or DOPEN) statement. Items in the variable list must agree

with the type of data input, or a 'FILE DATA ERROR' will resuit.

On the C64DX, an End Of File (EOF) condition or bad I/O status will

terminate input, as if a return character was received. It's good

practice to examine the I/O status byte (and the DS disk status for

file I/O) after every I/O instruction to check for problems or errors.

 10 DOPEN#1, "FILE" This program will

 20 C=0 count the number of

 30 DO: LINE INPUT#1,AS: C=C+1: LOOP UNTIL ST lines in FILE

 40 DCLOSE#1

 50 PRINT"FILE CONTAINS";C;" LINES."

INSTR -- Get the location of one string inside another string

 INSTR (string_1, string_2 [,starting_position])

This function searches for the first occurrence of string_2 in

string_1 and returns its location. A value of zero (0) is returned if

no match is found, if either string is null (empty), or if string_2

is longer than string_1.

If the starting position is given, the search begins at that location,

otherwise the search begins at the first character of string_1.

The strings can be literals, variables, or string expressions.

 X = INSTR("123456","4") Result is X= 0

 X = INSTR("123456","X") Result is X= -1

 X = INSTR("123123","2") Result is X= 123

 X = INSTR("123123","2",3) Result is X=-124

INT -- Greatest integer function

 INT (expression)

This function returns the greatest integer less than or equal to the

numeric expression.

JOY -- Joystick function

 JOY (port)

This function returns the state of a joystick controller in the

specified port.

 When port=l returns position of joystick 1

 When port=2 returns position of joystick 2

The value returned is encoded as follows:

 Fire = 128 + 1

 8 2

 7 0 3

 6 4

 5

A value of zero (0) means that the joystick is not being manipulated.

A value of 128 or more means that the fire button is being pressed.

The possible vales returned are:

 0 No activity 128 fire

 1 up 129 fire + up

 2 up + right 130 fire + up + right

 3 right 131 fire + right

 4 right + down 132 fire + right + down

 5 down 133 fire + down

 6 down + left 134 fire + down + left

 7 left 135 fire + left

 8 left + up 136 fire + left + up

KEY -- Enable, disable, display, or define function keys

 KEY ON

 KEY OFF

 KEY [key#, string]

There are 14 function keys available on the C64DX (seven unshifted and

seven shifted). The user can assign a string consisting of BASIC

commands, control codes, escape functions, or a combination of each to

function key. The data assigned to a key is typed out when that key is

pressed, just as if the characters were typed one by one on the

keyboard. The user can enable ("turn on") or disable ("turn off") the

function keys. When they are disabled, pressing a function key return

that key's normal character code instead of the string assigned to it.

This includes the HELP and (shifted) RUN keys. It is also possible to

redefine the HELP and (shifted) RUN keys, as function keys 15 and 16,

respectively. The system has default assignments for all function

keys. KEY with no parameters displays a listing of the current

assignments for all the function keys.

The maximum length for all the definitions together is 240 characters.

If an assignment would be too big to fit, an 'OUT OF MEMORY' error is

reported and the assignment is not made.

 KEY 2, "DIR U9"+CHR$(13)

This causes the computer to display the directory from disk unit #9

when function key 2 is pressed. This is equivalent to typing 'DIR U9'

and pressing the <RETURN> key directly. The CHR$(13) is the character

for <RETURN>. Other often used control codes are CHR$(141) for

'shifted RETURN', CHR$(27) for 'ESCape', and CHR$(34) to incorporate a

double quote into a KEY string.

 KEY 2, "DIR"+CHR$(34)+"*=P"+CHR$(34)+CHR$(13)

This is equivalent to typing DIR"*=P" and pressing <RETURN> at the

keyboard. Note the way quotes can be incorporated into an

assignment. When function key 2 is pressed, a directory of all program

files on the default system disk will be displayed.

 KEY OFF

This turns off function key strings. Pressing a function key now would

return the character codes associated with F-keys as on the VIC-20 and

C64 computers. KEY ON would re-enable function key strings, unchanged

from their previous assignments. To restore the system default

assignments, reset the computer.

LEFT$ -- Get the leftmost characters of a string

 LEFT$ (string,count)

This function returns a string containing the leftmost 'count' number

of characters of the string expression. Count is an numeric

expression in the range (0-255). If count is greater than the length

of the string, the entire string will be returned. If count is zero,

a null (empty) string will be returned.

 A$ = LEFT$("123ABC",3) Result is A$="123"

LEN -- Get the length of a string

 LEN (string)

This function returns the number of characters in a string expression.

Nonprinting characters and blanks are counted.

 A = LEN("ABC") Result is A=3

LET -- Assign a value to a variable

 [LET] variable = expression

The LET command is optional, since the equal sign by itself is

understood by the computer to mean assignment. Multiple assignments

on LET statements are not allowed.

 10 LET A=1: LET B=A+1: LET C$=" THREE"

 20 : D=1: E=D+1: F$=" THREE"

 30 PRINT A;B;C$

 40 PRINT D;E;F$

 Output: 1 2 THREE

 1 2 THREE

LINE -- Draw a line on a graphic screen

 LINE x0, y0, x1, y1

LINE draws a line on the currently defined graphic screen with the

currently defined draw modes. The line is draw from (x0,y0) to

(x1,y1).

LIST -- List a BASIC program from memory or disk

 LIST [startline] [- [endline]]

 LIST "filename" [,Ddrive] [<,|ON>Udevice]

LIST is used to view part or all of a BASIC program in memory or all

of a BASIC program on disk (without affecting the program that is

currently in memory).

The display can be slowed down by holding down the <C=> key or it can

be paused by pressing the <NO-SCROLL> key or <CONTROL><S>. A listing

that is paused can be restarted by pressing <NO-SCROLL> again or by

pressing <CONTROL><Q>. The display can be stopped by pressing <STOP>.

If the word LIST is followed by a line number, the computer shows only

that line number. If LIST is typed with two numbers separated by a

dash, the computer shows all lines from the first to the second line

number. If LIST is typed followed by a number and just a dash, it

shows all lines from that number to the end of the program. And if

LIST is typed, a dash, and then a number, all lines from the beginning

of the program to that line number are LISTed. By using these

variations, any portion of a program can be examined or easily brought

to the screen for modification. LIST can be used in direct mode or in

a BASIC program.

 LIST Shows entire program.

 LIST 100- Shows from line 100 until the end of the program.

 LIST 10 Shows only line 10.

 LIST -100 Shows lines from the beginning until line 100.

 LIST 10-200 Shows lines from 10 to 200, inclusive.

LOAD -- Load a program or data into memory from disk

 LOAD "filename" [,device_number [,relocate_flag]]

This command loads a file into the computer's memory. The filename

must be given, and pattern matching may be used. In the case of dual

drive systems, the drive number must be part of the filename. If a

device number is given, the file is sought on that unit, which must be

a disk drive. If a device number is not given, the default system

drive is used. See also DLOAD and RUN commands.

The relocate_flag is used to LOAD binary files. If the relocate_flag

is present and non-zero, the file will be copied into memory starting

at the address stored on disk when the file was SAVEd. See BLOAD. Do

not use the relocate_flag to load BASIC programs: they will be

automatically relocated to the start of the BASIC program area and

relinked.

To compare a program in memory to a disk file, use the VERIFY or

DVERIFY command. To compare a binary file, use BVERIFY.

See the discussion at DLOAD regarding CHAINING programs.

 LOAD "PROG" Loads BASIC program PROG from the system drive.

 LOAD FILE$,DRV Loads a program whose name is in the variable

 called F$ from the unit whose number is in DRV.

 LOAD "0:PROG" 8 Loads BASIC program PROG from unit 8, drive 0.

 LOAD "BIN",8,1 Loads a binary file into memory.

LOCATE -- [*** NOT YET IMPLEMENTED ***]

LOG -- Get the natural logarithm of a number

 LOG (number)

This function returns the natural logarithm of a numeric expression. A

natural log is a log to the base e (2.71828183). See the EXP function.

To convert to log base 10, divide by LOG(10).

 A = LOG(123) Result is A=4.81218436

 A = LOG(123) / LOG(10) Result is A=2.08990511

LOOP -- See DO/LOOP/WHILE/UNTIL/EXIT

LPEN -- Get the position of a lightpen

 PEN (position)

This function returns the current position of a lightpen on the

screen. When position=0, the X position is returned, and when

position=1 the Y position is returned. Note that lightpen coordinates,

like sprite coordinates, are offset from the normal graphic coordinate

map. This means you have to calculate where the lightpen is with

respect to the screen display. The electronics of each lightpen also

introduces a skew which must be factored into your calculations.

The X resolution is limited to every 2 pixels, and will always be an

even number in the approximate range (60-320). The Y position is in

the approximate range (50-250). If either the X or the Y position is

zero, the lightpen is off-screen.

Note that a lightpen COLLISION need not be enabled to use LPEN. A

bright background color, such as white, is usually required to

stimulate the light pen. Lightpens only work in game port 1.

 10 TRAP 40 We're done if STOP key

 15 BACKGROUND 1 Make background color white

 16 FOREGROUND 0 Make text color black

 20 COLLISION 3,100 Enable lightpen interrupt

 30 DO:LOOP Hang here until done

 40 END Done

 100 COLLISION 3 Got one, don't want more

 110 PRINT LPEN(0),LPEN(1) Display lightpen position

 120 COLLISION 3,100 Re-enable interrupt

 130 RETURN

MID$ -- Substring function

 MID$ (string, position [,length])

This function can appear on the left or the right side of an

assignment statement:

Case 1: string_var = MID$ (string_expression, position [,length])

This form returns a piece of another string. The function returns a

string of the specified length taken from the string_expression

beginning at the indicated position. The position must be in the range

(1-255), one (1) being the first character. The length can be any

number in the range (0-255), or it can be omitted. If the position

specified is greater than the number of characters in the

string_expression, a null (empty) string is returned. If the length is

greater than the number of characters from the given position to the

end of the string_expression, or the length is omitted, then all the

rightmost characters beginning at the position are returned.

 A$ = MID$("TICTACTOE",4,3) Result is A$="TAC"

 A$ = MID$("TICTACTOE",4) Result is A$="TACTOE"

 A$ = MID$("TICTACTOE",10,1) Result is AS="" (empty)

Case 2: MID$ (string_var, position [,length]) = string_expression

This form replaces a portion of the string contained in string_var

with data from another string_expression, beginning at the specified

position in the string_var. If the length is given only, that many

characters from the string_expression are taken, otherwise all the

characters in the string_expression will replace characters in the

string_var beginning at the position specified. The there are too many

characters to fit in the string_var, an 'ILLEGAL QUANTITY' error is

reported. If the length given is zero, no characters will be replaced.

 A$="TICTACTOE": MID$(A$,4,3)="123456" Result is A$="TIC123TOE"

 A$="TICTACTOE": MID$(A$,4) ="123456" Result is A$="TIC123456"

 A$="TICTACTOE": MID$(A$,5) ="123456" Result is 'ILLEGAL QUANTITY'

MONITOR -- Enter the built-in machine language monitor

 SEE SECTION 3.2 ON THE C64DX MONITOR.

MOUSE -- Enable or disable the mouse driver

 MOUSE ON [,port [,sprite [,position]]]

 MOUSE OFF

 port = joyport 1, 2, or either (both) (1-3)

 sprite = sprite pointer (0-7)

 position = initial pointer location (x,y)

 normal, relative, or angular coordinate

 defaults to sprite 0, port 2

 ???? add min/max x/y positions

 [*** THIS COMMAND IS SUBJECT TO CHANGE ***]

Mouse ON enables the built-in mouse driver. The user must load a

pointer into the proper sprite area ($600-$7FF). The driver assumes

the "hot point" is the top left corner of the sprite, and does not

allow this point to leave the screen.

Mouse OFF will turn off the driver and the currently associated

sprite.

Use the RMOUSE function to get the current pointer position and button

status. See the sample program at RMOUSE.

MOVSPR -- Position sprite or set sprite in motion

 MOVSPR sprite <,x,y>

Use the SPRITE command to turn on a sprite and MOVSPR to position it.

Sprites are numbered 0-7. The sprite's position can be specified using

one of the following coordinate types:

 [+/-]x, [+/-]y = [relative] position

 x#y = angle and speed

 x;y = distance and angle

Angles are specified as 0-360 degrees, with 0 being straight up.

Speeds are specified as a number of pixels per frame, 0-255. Sprites

are moved through each pixel so that collisions are accurately

detected.

NEW -- Delete program in memory and clear all variables

 NEW [RESTORE]

This command erases the entire program in memory and clears all

variables and open channels (but it does NOT properly close open

disk write files -- used DCLOSE or DCLEAR beforehand). NEW also resets

the runtime stack pointer (clears GOSUB & FOR/NEXT stacks), the DATA

pointer, and the PRINTUSING characters.

The BASIC program in memory is lost unless it was previously SAVEd to

disk. If you have not entered or loaded any BASIC programs since

typing NEW, the RESTORE option will recover the BASIC program in

memory. But if the BASIC environment has been changed in any way, the

program may not be restored correctly. If BASIC can tell something's

wrong, it will report 'PROGRAM MANGLED'.

NEW can be used in direct (edit) mode or in a program. When it's

encountered in a program, the program terminates.

NEXT -- See FOR/NEXT/STEP and RESUME

NOT -- Get the complement of a number

 NOT (expression)

The NOT function returns the complement of an integer in the range

(-32768 to 32767). The function operates on the binary value of signed

16-bit integers. An expression outside of this range will cause an

'ILLEGAL QUAUTITY' error.

 X = NOT(5) Result is X=-6

 X = NOT(-6) Result is X=5

NOT is often used in logical comparisons (such as an IF statement) to

invert the result, since -1 (true) is the result of NOT(0) (false),

and 0 (false) is the result of NOT(-1) (true).

 X = NOT("ABC"="ABC") AND ("DEF"="DEF") Result is X= 0 (false)

 X = NOT("ABC"="ABC") AND ("DEF"="XYZ") Result is X=-1 (true)

OFF -- Subcommand used with various BASIC commands.

ON -- Computed GOTO/GOSUB

 ON expression <GOTO|GOSUB> line_number_list

This is a variation of the IF <expression> GOTO statement that

branches to one of several line numbers based upon the value of an

expression. The integer value of the evaluated expression determines

which line number in the line_number_list gets control.

If the expression evaluates to one, the first line number in the list

gets control, if it's two the second line number gets control, and so

on. Fractional parts of the value are truncated (for example, 2.9

becomes 2). If the value is zero or greater than the number of items

in the list the computer takes none of the branches and continues on

with the next statement. If the value is negative, an 'ILLEGAL

QUANTITY ERROR' is reported.

The ON/GOSUB statement must call the first line number of a subroutine

and the subroutine must end with a RETURN statement. After executing

the subroutine, control is returned to the statement following the

ON/GOSUB statement.

 10 INPUT"ENTER A NUMBER 1-3: ",X

 20 ON X GOTO 100, 200, 300

 30 PRINT"TOO LOW OR TOO HIGH": RUN

 100 PRINT"ONE": RUN

 200 PRINT"TWO": RUN

 300 PRINT"THREE": RUN

OPEN -- Open a channel to a device or disk file

 OPEN logical_chnl_num, device_number [,secondary_adr

 [,<filespec|command>]]

Before a program can access a device or a file, an I/O channel must be

opened to it to communicate through. When something is opened, you

associate a logical channel number with it, and it is with this number

that all other I/O statements access the device or file. The OPEN

command can be used in direct (edit) mode or in a program.

The channel number, device number, and optional secondary address are

integers from 0-255. Refer to the device's manual for more

information about what (if any) secondary addresses it uses.

 channel: 0-127 return = output return character only

 128-255 return = output return + linefeed

 device: 0 Keyboard

 1 Default system drive

 whatever its number is (see SET DEF)

 2 RS232

 3 Screen

 4-7 Serial bus

 (usually reserved for printers)

 8-31 Serial bus

 (usually reserved for disk drives)

The filespec is the file name in the case of disk files (refer to your

DOS manual for details). Typically, the filename is a string having

the the following form:

 [[@|S]drive:] filename [,type] [,mode]

An example would be 0:MYFILE,SEQ,READ to open the sequential file

MYFILE for reading on drive 0. Disk drives usually support some kind

of filename pattern matching. Most disk drives support the following

file types and modes (can be abbreviated to first character):

 types: 'S'equential

 'P'rogram

 'R'elative

 'U'ser

 modes: 'R'ead

 'W'rite

 'L'ength (for relative type files)

Some channels or devices accept a command string instead of a filename

when they are opened. An example would be the disk command channel or

the RS232 open/setup command. Refer to the device's documentation.

 OPEN 1,8,15,"I" Open CBM disk command channel & send

 it the 'I'nitialize command.

 OPEN 4,4,7 Open CBM printer channel in upper/lower

 case mode.

 OPEN 128,2,2,CHR$(14) Open a 9600 8N1 RS232 channel and

 translate CR into CRLF on output.

See also DOPEN, DCLOSE, CLOSE, CMD, GET#, INPUT#, and PRINT#

statements and I/O status variables ST, DS, and DS$.

OR -- Boolean operator

 expression OR expression

The OR operator returns a numeric value equal to the logical OR of two

numeric expressions, operating on the binary value of signed 16-bit

integers in the range (-32768 to 32767). Numbers outside this range

result in an 'ILLEGAL QUANTITY' error.

 X = 4 OR 8 Result is X=12

In the case of logical comparisons, the numeric value of a true

situation is -1 (equivalent to 65535 or $FFFF hex) and the numeric

value of a false situation is zero.

 X = ("ABC"="ABC") OR ("DEF"="DEF") Result is X=-l (true)

 X = ("ABC"="ABC") OR ("DEF"="XYZ") Result is X=-1 (true)

 X = ("ABC"="XYZ") OR ("DEF"="XYZ") Result is X= 0 (false)

PAINT -- Fill a graphics area with color

 PAINT x,y, mode [,color]

 x,y coordinate to begin fill at

 mode 0: fill area to edge = color

 1: fill area to edge=same as color at x,y

PAINT fills an enclosed graphic area starting at the given coordinate

with the color of the currently defined PEN. The mode parameter

identifies the region to be filled.

 [*** THIS COMMAND IS NOT YET IMPLEMENTED ***]

PALETTE -- Define a color

 PALETTE [screen#|COLOR], color#, red, green, blue

 PALETTE RESTORE

 screen# 0-1

 color# 0-255

 red 0-15

 green 0-15

 blue 0-15

The PALETTE command can be used to define a color for a logical

graphic screen, set an absolute color, or restore the C64DX VIC-III

default colors. PALETTE can be used in direct mode or in a program.

The VIC-III pre-defines the first 16 colors to the usual C64-type

colors, but you can change them with the PALETTE COLOR command or

restore them all with the PALETTE RESTORE command.

See the sample program after the SCREEN command.

PASTE -- Put a CUT graphic area on the screen

 PASTE x,y

 [*** NOT YET IMPLEMENTED ***]

PEEK -- Function returning the contents of a memory location

 PEEK (address)

This function returns the contents of a memory location. The address

must be an integer in the range of 0-65535 ($0-$FFFF) and the value

returned will be an integer in the range of 0-255 ($0-$FF).

Use the BANK command to specify which 64K memory bank the address is

in. Note that a BANK number greater than 127 (i.e., a bank number

with the most significant bit set) must be used to address an I/O

location, such as the VIC chip or color memory. Refer to the system

memory map for details. PEEK uses the DMA device to access memory.

Use the POKE command to change the contents of a memory location.

 BANK 0: X = PEEK (208) Reads the keyboard buffer index. If

 it's empty, X will be zero, otherwise X

 will be the number of characters in it.

PEN -- Specify a pen color for drawing on graphic screen

 PEN pen, color

 pen 0-2

 color 0-255

Before you can draw anything on a graphic screen, you have to tell

BASIC what color your PENs are. You should first define what your

colors are using the PALETTE command, then use PEN to associate those

colors with a PEN. Whatever graphic commands you use after a PEN

command will use the PEN you specified.

 PEN 0,1 Put color 1 "ink" into draw pen 0

See the sample program after the SCREEN command.

PIC -- Graphic picture subcommand

PLAY -- Play a musical string

 PLAY "[Vn,On,Tn,Un,Xn,elements]"

 [*** WILL CHANGE TO ADD 2ND SID SUPPORT ***]

The PLAY command lets you select a voice, octave, instrument, volume,

filter, and musical notes. All these parameters are packed into a

string (spaces are allowed for readability).

 On = Octave (n=0-6)

 Tn = Tune envelope # (n=0-9)

 0= piano (defaults)

 1= accordion

 2= calliope

 3= drum

 4= flute

 5= guitar

 6= harpsichord

 7= organ

 8= trumpet

 9= xylophone

 Un = Volume (n=0-9)

 Vn = Voice (n=1-3)

 Xn = filter on (n=1), off (n=0)

 Elements:

 A,B,C,D,E,F,G ... Notes, may be preceded by:

 # Sharp

 S Flat

 Dotted

 W Whole note

 H Half note

 Q Quarter note

 I Eighth note

 S Sixteenth note

 R Rest

 M Wait for all voices playing to end

 (a measure)

Once the music string starts PLAYing, the computer will continue with

the next statement. The music will continue to play automatically.

Using the 'M'easure command will cause the computer to wait until the

music has up to that point has been played out.

Use the TEMPO command to alter the tempo (speed) of PLAY. Note that

the VOLume command can change a PLAY string's volume setting.

POINTER -- Get the address of a variable descriptor

 POINTER (variable_name)

This function returns the address of an entry in the variable table.

If the value returned is zero, the variable is currently undefined.

The variable table is normally in the second RAM bank (BANK 1). See

the section on variable storage for details.

Note that, while the location of a string descriptor will not change,

the location of the actual string in memory changes all the time.

Also, when working with an array name you must specify a particular

element, to which POINTER will return a pointer to that element's

descriptor and not to the array descriptor.

 10 A$="FRED" Define A$

 20 DESC=POINTER (A$) Lookup A$ in variable table

 30 BANK1: PRINT PEEK(DESC) Displays the length of A$

PORE -- Write a byte to memory location

 POKE address, byte [,byte ...]

POKE is used to write one or more bytes into one or more memory

locations. The address must be an integer in the range of 0-65535

($0-SFFFF) and the value to be written must be an integer in the range

of 0-255 ($0-$FF). If more than one byte is given, it will be written

into successive memory locations.

Use the BANK command to specify which 64K memory bank the address is

in. Note that a BANK number greater than 127 (i.e., a bank number

with the most significant bit set) must be used to address an I/O

location, such as the VIC chip or color memory. Refer to the system

memory map for details. Also note that, unlike previous CBM computers,

POKEs to a ROM location will not "bleed through" into a corresponding

RAM location. POKE uses the DMA device to access memory.

Use the PEEK function to read a byte from a memory location.

Because this command directly accesses system memory, extreme care

should be taken in its use. Altering the wrong memory location can

crash the computer (press the reset button to reboot).

 BANK 0: POKE 208,0 Resets location 208 ($000D0),

 clearing the keyboard buffer.

 BANK 128: POKE DEC("D023"),1,2,3 Sets the VIC extended background

 colors to 1, 2, and 3 respectively

POLYGON -- Draw a regular n-sided figure on a graphic screen

 POLYGON x,y, xradius,yradius, [solid], angle,drawsides,sides,subtend

 x,y = center of polygon

 x,yradius = radii of polygon

 solid = solid flag (0-1)

 angle = starting angle (0-360)

 drawsides = # of sides to draw (3-127)

 sides = # sides of polygon (drawsides<=sides)

 subtend = subtend flag (0-1)

POS -- Get the column number of the cursor

 POS(0)

This function returns the current text column the cursor is in, with

respect to the currently defined window (see RWINDOW). It's usually

used to format text printed to the screen. The argument (0) is not

used for anything. POS will not work as expected if text output is

redirected to a disk file or the printer.

 10 MAXCOL = RWINDOW(l)

 20 FOR ADR=DEC("600") TO DEC("7FF")

 30 PRINT HEX$(PEEK(ADR));" ";

 40 IF POS(0) > (MAXC0L-5) THEN PRINT

 50 NEXT

This example illustrates one way to format output to the screen,

keeping the last item on a line from being split between two lines,

regardless of the window size (as long as the window size is at least

4 characters wide). It dumps the data for the first sprite in hex.

POT -- Paddle function

 POT (paddle)

This function returns the state of a game paddle (POTentiometer)

controller in one of the two game ports.

 paddle=1 Position of paddle #1 (port 1, paddle "A")

 paddle=2 Position of paddle #2 (port 1, paddle "B")

 paddle=3 Position of paddle #3 (port 2, paddle "A")

 paddle=4 Position of paddle #4 (port 2, paddle "B")

The value returned by POT ranges from 0 to 255. Any value greater than

255 means that the fire button is also pressed. Paddles are read

"backwards" from normal things like volume knobs or faucets. A value

of 255 means the paddle has been turned counterclockwise as far as it

will go ("off"), and a value of 0 means the paddle has been turned

clockwise as far as it will go "on").

Note that some paddles are "noisy" and their output must be averaged

or "damped" to prevent whatever they are controlling from jittering.

 10 SPRITE 1,1 Turn on a sprite

 20 DO Begin a loop

 30 X=POT(3) Read paddle "A" in port 2

 40 MOVSPR 1,300-(X AND 254),200 Move the sprite

 50 LOOP UNTIL X>255 Loop until button pressed

 60 SPRITE 1,0 Turn off sprite

This sample program turns on a sprite and lets you move it

horizontally with a paddle. If you press the paddle's fire button, it

turns off the sprite and the program ends. The calculations in line 40

do several things all at once -- they mask the fire button and "damp"

the output to reduce jitter by masking the least significant bit (the

X AND 254 part) and invert the output so that turning the paddle to

the right makes the sprite go right (subtracting result from 300).

PRINT -- Display data on text screen

 PRINT [expression_list] [<,|;>]

PRINT will evaluate each item in the expression_list and pass the

results to the system screen editor to display on the screen. If a

screen window is defined, the output will be confined to the window.

PRINT can be used to send control codes and escape sequences to the

screen editor to do such things as set windows, change TAB stops,

change text colors or set reverse field, or choose cursor styles. See

the section on Editor modes for details.

PRINT can be followed by any of the following:

 Numeric or string expressions 12, "HELLO", 1+1, "S"+STR$(I)

 Variable names A, B, A$, X$

 Functions ABS(33), HEX$(160)

 Punctuation marks ;,

 Nothing

Numeric values are always followed by a space. Positive numbers are

preceded by a space, and negative numbers are preceded by a minus sign

('-'). Scientific notation is used when a number is less than 0.01 or

greater than or equal to 999999999.2 .

A semicolon (';') or space between list items causes the next item to

be printed immediately following the previous item. A comma (',')

causes the next item to be printed at the next comma stop (similar to

TAB stops, but every 10 spaces). These rules apply to the next print

statement, if the expression_list ends with either a semicolon or a

comma, otherwise a return is printed. Note that floating point

variable names should not be separated from the next variable name

with a space, and constants should not be preceeded or followed by a

space.

For formatted PRINT output, see the PRINT USING command.

 PRINT "HELLO" HELLO

 A$="THERE": PRINT "HELLO ";A$ HELLO THERE

 A=4:B=2: PRINT A+B 6

 J=41: PRINT J;: PRINT J-1 41 40

 C=A+B:D=B-A: PRINT A;B;C;D 4 2 6 -2

 C=A+B:D=B-A: PRINT A,B,C,D 4 2 6 -2

 A=1:B=2:AB=3: PRINT A B 3

 PRINT 1 2 3, 1 2 3 +1 123 124

 PRINT 0.009, 0.01 9E-03 .01

 PRINT 999999999; 999999999.2 999999999 1E+09

The CMD command can be used to redirect PRINT output to a device or

file. Also see the POS, SPC, TAB functions, CHAR and PRINT USING.

PRINT# -- Send data to an I/O channel (file)

 PRINT#logical_channel_number [,expression_list] [<,|;>]

This command is used to send (transmit) data to a device or file. The

logical_channel number is the number assigned to the device (file)

in an OPEN (or DOPEN) statement. The output is otherwise identical to

that of a PRINT statement, including the comma and semicolon

conventions. Note that certain screen-oriented functions, such as TAB

and SPC do not have the same effect as they do with screen I/O.

It's good practice to examine the I/O status byte (and the DS disk

status for file I/O) after every I/O instruction to check for problems

or errors.

For formatted output, use the PRINT# USING command.

 10 OPEN 1,8,15 Initialize disk drive

 20 PRINT#1,"I" (same as DCLEAR)

 30 CLOSE 1

 10 DOPEN#1,"NEWFILE",W Create a SEQ file

 20 FOR I=1 TO 10

 30 PRINT#1, I, STR$(I) Write numbers 1-10 to it

 40 NEXT

 50 DCLOSE#1

 10 OPEN 2,2,2,CHR$(12) Open 1200 baud RS232 channel

 20 PRINT#2, "ATDT,5551212" Send modem a Hayes dial command

PRINT USING -- Output formatted data to the screen, device, or file

PRINT [#logical_channel_number,] USING format; expression_list [<,|:>]

Read about the PRINT and PRINT# commands first for information

regarding the syntax of the expression list and, for device output,

establishing the logical_channel_number.

The items in the expression list must be separated by commas (',').

The format is defined in a string literal or string variable and is

described below. See the PUDEF command for specifing special

formatting characters. The various formatting characters are:

 CHARACTER SYMBOL NUMERIC STRING

 ---------------- ------ ------- ------

 Pound sign # X X

 Plus sign + X

 Minus sign - X

 Decimal Point . X

 Comma , X

 Dollar Sign $ X

 Four Carets ^^^^ X

 Equal Sign = X

 Greater Than Sign > X

The pound sign ('#') reserves room for a single character in the

output field. If the data item contains more characters than the

number of pound signs in the format field, the entire field will be

filled with asterisks ('*').

 10 PRINT USING "####";X

For these values of X, this format displays:

 A = 12.34 12

 A = 567.89 568

 A = 123456 ****

For a STRING item, the string data is truncated at the bounds of the

field. Only as many characters are printed as there are pound signs

in the format item. Truncation occurs on the right.

The plus ('+') and minus ('-') signs can be used in either the first

or last position of a format field but not both. The plus sign is

printed if the number is positive. The minus sign is printed if the

number is negative.

If a minus sign is used and the number is positive, a blank is printed

in the character position indicated by the minus sign.

If neither a plus sign nor a minus sign is used in the format field

for a numeric data item, a minus sign is printed before the first

digit or dollar symbol if the number is negative and no sign is

printed if the number is positive. This means that one more character

is printed if the number is positive. If there are too many digits to

fit into the field specified by the pound sign and +/- signs, then an

overflow occurs and the field is filled with asterisks ('*').

A decimal point ('.') symbol designates the position of the decimal

point in the number. There can be only one decimal point in any format

field. If a decimal point is not specified in the format field, the

number is rounded to the nearest integer and printed without any

decimal places.

When a decimal point is specified, the number of digits preceding the

decimal point (including the minus sign, if the number is negative)

must not exceed the number of pound signs before the decimal point. If

there are too many digits an overflow occurs and the field is filled

with asterisks ('*').

A comma (',') allows placing of commas in numeric fields. The position

of the comma in the format list indicates where the commas appears in

a printed number. Only commas within a number are printed. Unused

commas to the left of the first digit appear as the filler character.

At least one pound sign must precede the first comma in a field.

If commas are specified in a field and the number is negative, then a

minus sign is printed as the first character even if the character

position is specified as a comma.

 FIELD EXPRESSION RESULT COMMENT

 ------ ----------- ------ -----------------------------

 ##.# -.1 -0.1 Leading zero added

 ##.# 1 1.0 Trailing zero added

 #### -100.5 -101 Rounded to no decimal places

 ###. 10 10. Decimal point added

 #$## 1 $1 Leading dollar sign

 #### -1000 **** Overflow because 4 digits and

 minus sign don't fit in field

A dollar sign ('$') symbol shows that a dollar sign will be printed in

the number. If the dollar sign is to float (always be placed before

the number), specify at least one pound sign before the dollar sign.

If a dollar sign is specified without a leading pound sign, the dollar

sign is printed in the position shown in the format field. If commas

and/or a plus or minus sign is specified in a format field with a

dollar sign, the program prints a comma or sign before the dollar

sign. The four up arrows or carets symbol is used to specify that the

the number is to be printed in E format (scientific notation). A pound

sign must be used in addition to the four up arrows to specify the

field width. The arrows can appear either before or after the pound

sign in the format field. Four carats must be specified when a number

is to be printed in E format. If more than one but fewer than four

carats are specified, a syntax error results. If more than four carats

are specified only the first four are used. The fifth carat is

interpreted as a no text symbol. An equal sign ('=') is used to

center a string in a field. The field width is specified by the number

of characters (pound sign and =) in the format field. If the string

contains fewer characters than the field width, the string is centered

in the field. If the string contains more characters that can be fit

into the field, then the rightmost characters are truncated and the

string fills the entire field. A greater than sign ('>') is used to

right justify a string in a field.

 5 X=32: Y=100.23: A$="TEST"

 10 PRINT USING "$##.## ";13.25,X,Y

 20 PRINT USING "###>#";"CBM",A$

When this is RUN, the following output appears on the screen:

 $13.25 $32.00 $*****

 CBM TEST

$***** is printed instead of Y because Y has 5 digits, which exceeds

the format specification. The second line asks for the strings to be

right justified, which they are.

PUDEF -- Redefine PRINT USING symbols

 PUDEF definition_string

PUDEF allows redefinition of up to 4 symbols in the PRINT USING

statement. Blanks, commas, decimal points, and dollar signs can be

changed into some other character by placing the new character in the

correct position in the PUDEF definition_string.

Position 1 is the filler character. The default is a space character.

Place another character here to be used instead of spaces. Similarly,

Position 2 is the comma character. Default is a comma.

Position 3 is the decimal point.

Position 4 is the dollar sign.

 10 PUDEF "*" PRINTs * in the place of blanks.

 20 PUDEF " @" PRINTs @ in place of commas.

QUIT -- [*** UNIMPLEMENTED ***]

RCLR -- Get the current screen color

 RCLR(source)

 [*** CURRENTLY UNIMPLEMENTED ***]

This function returns the color assigned to source as an number in the

range of 0-15. The color sources are:

 0 = background

 1 = foreground

 2 = multicolor 1

 3 = multicolor 2

 4 = border

 5 = highlight color

RDOT -- Get the current position or color of the pixel cursor

 RDOT(source)

 [*** CURRENTLY UNIMPLEMENTED ***]

This function returns information about the current pixel location.

 0 = current X position

 1 = current Y position

READ -- Read data from DATA statements

 READ variable_list

READ statements are used along with DATA statements. READ statements

read data from DATA statements into variables, just like an INPUT

statement reads data typed by the user. READ statements can be used in

direct or program mode, but DATA statements must be in a program.

The variable types in the variable_list must match the type of DATA

being read, or a 'TYPE MISMATCH' error is reported. If there are

insufficient data in the program's DATA statements to satisfy all

of the variables in the READ statement, an 'OUT OF DATA' error is

reported.

The computer maintains a pointer to the next DATA item to be read by a

READ statement. Initially this pointer points to the beginning of

the program. As each variable in a READ statement is filled, the

computer moves the DATA pointer to the next DATA item. If all of a

READ statement's variables are filled before all of the data has been

read from a DATA statement, the next READ statement will begin reading

data at the point where the previous READ stopped.

The DATA pointer can be changed by the RESTORE command. It can be

reset back to the beginning of the program, or pointed to a specific

line number. See RESTORE.

 10 DATA 100, 200, FRED, "HELLO, MOM", , 3.14, ABC123, -1.7E-9

 20 READ X,Y

 30 READ NAME$, MSG$, NULL$

 40 READ PI, JUNK$, S

 50 RESTORE

RECORD -- Specify a relative disk file record number

 RECORD #logical_channel_number, record [,byte]

This command allows you to access any part of any record in a RELative

type disk file. If the byte parameter is omitted, the access pointer

is pointed at the first byte of the specified record number.

Before you can use RECORD, you must OPEN a file. See OPEN and DOPEN

for instructions. Also refer to your DOS manual for an explanation of

RELative type files.

 10 INPUT"ENTER RELATIVE FILENAME: ",F$ get name of existing file

 20 DOPEN#1, (F$),L: PRINT DS$ open it & display disk status

 30 R=1: INPUT"ENTER RECORD NUMBER: ",R get a record number

 40 B=1: INPUT"ENTER BYTE (RETURN): ",B get byte number, if any

 50 RECORD#1, R,B position file pointer

 60 INPUT#1, REC$ read the record

 70 PRINT REC$ display the record

 80 PRINT "CONTINUE? (Y/N)"

 90 GETKEY A$: IF A$="Y" THEN 30

100 DCLOSE#1 close the file

REM -- Place an explanatory remark or comment in a program

 REM plain text message

The REMark command is just a way to leave a note to whomever is

reading a LISTing of the program. It might explain a section of the

program, give information about the author, etc.

REM statements in no way effect the operation of the program, except

to add length to it (and therefore slow it down a little). No other

executable statement can follow a REMark on the same line.

 10 REM THIS PROGRAM WAS WRITTEN ON 2/14/91 BY F.BOWEN

 20 REM SAMPLE PROGRAM

 30 :

 40 DIR :REM DISPLAY THE DISK DIRECTORY

 50 LIST "SAMPLE PROGRAM" :REM DISPLAY THIS PROGRAM

 60 END

RENAME -- Rename a disk file

 RENAME "oldname" TO "newname" [,Ddrive] [<ON|,>Udevice]

The RENAME command changes the name of a file in the disk directory.

Pattern matching is not allowed, and "newname" must be a valid

filename that does not already exist on the disk. The file being

renamed does not need to be open.

 RENAME "TEST" TO "FINALTEST"

 RENAME (OLD$) TO (OLD$+".OLD") ON U(DEV)

RENUMBER -- Renumber the lines of a BASIC program

 RENUMBER [new_starting_line [,[increment] [,old_starting_line]]]

Renumber is used to resequence the line numbers of a BASIC program in

memory. All or part of a program can be renumbered. The RENUMBER

command first scans the program to make sure all the line numbers

referenced in commands (such as GOTO, GOSUB, TRAP, etc.) exist, that

new line numbers are in the legal range, and that changing the program

would not overflow the available memory. An 'UNRESOLVED REFERENCE',

'LINE NUMBER TOO LARGE', or 'OUT OF MEMORY' error is reported if

there's a problem, and RENUMBER is automatically canceled without

having changed anything.

If the program passes all the checks, RENUMBER changes the specified

line numbers and updates all references to the old numbers throughout

the program and relinks the program.

The new_starting_line is the number of the first line in the program

after renumbering. It defaults to 10. The increment is the spacing

between line numbers (eg., 10, 20, 30 would mean an increment of 10).

It also defaults to 10. The old_starting_line is the line number in

the program where you want renumbering to begin.

RENUMBER can be used in direct (edit) mode only. Note that line number

zero (0) is a valid line number.

 RENUMBER Renumbers the entire program. After

 renumbering, the first line will be 10

 the second 20, etc. through the end

 of the program.

 RENUMBER ,1 Renumbers the entire program as above,

 but in increments of one. The first

 line will be 10, the second 11, etc.

 RENUMBER 100, 5, 80 Starting at line 80, renumbers the

 program. Line 80 becomes line 100,

 and lines after that are numbered in

 increments of 5, through the end of

 the program.

 RENUMBER ,,65 Starting at line 65, renumbers lines

 in increments of 10, starting at line

 10 through the rest of the program.

RESTORE -- Position READ pointer at specific DATA statement

 RESTORE [line]

The computer maintains a pointer to the next DATA item to be read by a

READ statement. Initially this pointer points to the beginning of

the program. The DATA pointer can be changed by the RESTORE command.

Using RESTORE without specifying a line number will reset the DATA

pointer back to the beginning of the program. If a line number is

specified, the DATA pointer is pointed to that line. The line does not

have to contain a DATA statement. When the computer executes the

next READ statement, it will look for the next DATA item starting at

the line the DATA pointer is at.

See the READ command an example.

RESUME - Resume program execution after error TRAP

 RESUME [line|NEXT]

Used to return to execution after TRAPping an error. If a line number

is given, the computer performs a 'GOTO line' and resumes execution at

that line. RESUME NEXT resumes execution at the statement following

the one that cause the error. RESUME without any parameters will

resume execution at the statement that cause the error.

If the computer encounters a RESUME statement outside of a TRAP

routine or if a TRAP was not in effect a 'CAN'T RESUME' error is

reported. RESUME can only be used in program mode.

 10 TRAP 90

 20 FOR I=-5 TO 5

 30 PRINT 5/I

 40 NEXT

 50 END

 60 :

 90 PRINT ERR$(ER): RESUME NEXT

RETURN -- Return from subroutine or event handler

 RETURN

This statement is associated with the GOSUB (GO SUBroutine) statement.

When a subroutine is called by a GOSUB statement, the computer

remembers where it's at before it calls the subroutine. When the

computer encounters a RETURN statement, it returns to the place it

last encountered a GOSUB and continues with the next statement.

If there wasn't a previous GOSUB, then a 'RETURN WITHOUT GOSUB' error

is reported.

RETURN is also used by event handlers, set up by the COLLISION

command. See COLLISION.

RGR -- Get the current graphic mode

 RGR(0)

 [*** CURRENTLY UNIMPLEMENTED ***]

This function returns current graphic mode. A result of zero means the

display is text, a non-zero result means it's graphic.

RIGHT$ -- Get the rightmost characters of a string

 RIGHT$ (string,count)

This function returns a string containing the rightmost 'count' number

of characters of the string expression. Count is an numeric expression

in the range (0-255). If count is greater than the length of the

string, the entire string will be returned. If count is zero, a null

(empty) string will be returned.

 A$ = RIGHT$("123ABC",3) Result is A$="ABC"

RMOUSE -- Get the mouse position and button status

 RMOUSE [Xposition [,Yposition [,button]]]

 X,Yposition = current position of mouse pointer sprite

 Button = current status of mouse buttons

 0 = no button

 1 = right button

 128 = left button

 129 = both buttons

RMOUSE is a command which retrieves a mouse's current position and the

state of its buttons, and places this information into the specified

numeric variables. If a mouse is not installed, "-1" is returned for

all variables. If both ports are enabled, buttons from each port are

merged. Use the MOUSE command to turn a mouse on or off.

 10 MOUSE ON, 2, 1 Turn mouse on, port 2, sprite 1

 20 DO Begin loop

 30 RMOUSE X, Y, B Get mouse position & buttons

 40 PRINTUSING"### ";X,Y,B Show " " "

 50 LOOP UNTIL B=129 Loop until user presses both buttons

 60 MOUSE OFF Turn mouse off

RND -- Get a pseudo-random number

 RND (type)

The RND function returns a pseudo RaNDom number between 0 and 1. The

random sequence returned is determined by the type parameter:

 type = 0 Returns a random number based upon the system clock.

 type < 0 Negative numbers "seed" the random number generator,

 defining a new but reproducible random sequence.

 type > 0 Positive numbers draw the next random number from the

 sequence defined by the last "seed" value.

This lets a programmer use a reproducible sequence while debugging

(fixing) a program, so that random errors can be easily reproduced.

Once the program has been fixed, it can be "seeded" such that a random

sequence is used every time the program is run.

 10 DO

 20 INPUT "SEED"; S

 30 IF S=0 THEN END

 40 FOR I=1 TO S

 50 PRINT INT(RND(1)*6)+1, INT(RND(1)*6)+1

 60 NEXT

 70 LOOP

The above program will demonstrate the results of seeding the random

number generator. It lets you specify a positive or negative seed

value, and then prints the first S random pairs of that sequence.

Enter a zero to end the program. The calculations in line 50 make the

random numbers be integers from 1 to 6, like dice. Type in a negative

dice from that sequence. Every time you enter "-1", for example, you

will roll the same numbers:

 first roll 2 and 6

 second 6 and 1

 third 1 and 1

 fourth 1 and 4

 fifth 5 and 5

Games and statistical programs should use RND(0) for true randomness

or seed the generator with a random number, such as RND(-TI).

The general form for getting random integers using RND is:

 INT(RND(0) * MAX) + 1

where MAX is the highest number you can get. This gives you numbers as

low as 1 and as high as MAX. For dice, MAX is 6 (or 12 if you want

to simulate rolling two dice at once). For cards, MAX is 52.

 INT(RND(0) * 16)

This form will return integers from zero to 15, which is useful for

generating random colour values, for example.

RREG -- Get register data after a SYS call

 RREG [a_reg] [,[x_reg] [,[y_reg] [,[z_reg] [,status]]]]

Following a SYS call, the RREG command retrieves the contents of the

microprocessor's registers and puts them into the specified numeric

variables. See the sample program at SYS.

RSPCOLOR -- Get multicolor sprite colors

 RSPCOLOR (multicolor#)

Returns the current colors for multicolor sprites. Color values range

from 0-15. Use RSPRITE function to get the foreground sprite color.

 multicolor# = 1 gets multicolor #1

 multicolor# = 2 gets multicolor #2

See SPRITE and SPRCOLOR.

RSPPOS -- Get the location and speed of a sprite

 RSPPOS (sprite,parameter)

The RSPPOS function returns the current X or Y position of a sprite

and its speed, set by the MOVSPR command. A sprite does not have to

be on to use RSPPOS. The sprite number must be in the range of 0-7,

and the parameter is:

 0 to get current X position

 1 to get current Y position

 2 to get current speed (0-255)

RSPRITE -- Get information about a sprite

 RSPRITE (sprite,parameter)

The RSPRITE function returns the current state of a sprite, set by the

SPRITE command. The sprite number must be in the range of 0-7, and the

parameter is:

 0 to see if it's turned on (1)=yes (0)=no

 1 to get sprite foreground color (0-15)

 2 to get priority over background (1)=yes (0)=no

 3 to get X-expansion factor (1)=yes (0)=no

 4 to get Y-expansion factor (1)=yes (0)=no

 5 to get multicolor factor (1)=yes (0)=no

RUN -- execute BASIC program

 RUN [line #]

 RUN "filename" [,Ddrive] [<On|,>Udevice]

RUN executes the BASIC program that is currently in memory. The

program has to be LOADed (DLOAD) or manually typed in before it can

be executed. If a line number is specified, execution begins at that

line. If a filename is specified, the program is automatically loaded

from disk into memory and executed. RUN can be used in a program.

RUN clears all variables and open channels (but it does NOT properly

close open disk write files -- used DCLOSE or DCLEAR beforehand). RUN

also resets the runtime stack pointer (clears GOSUB & FOR/NEXT stacks)

the DATA pointer, and the PRINT USING characters. To start a program

without initializing everything, use GOTO.

 RUN Starts the program at the first line.

 RUN 100 Starts the program at line 100.

 RUN "TEST" Loads the program TEST from the, default system

 disk and starts the program at the first line.

RWINDOW -- Get information about the current text window

 RWINDOW (parameter)

This is a function that returns information about the current console

text display. The parameter is specified as:

 0 to get the maximum line # in the current window

 1 to get the maximum column # in the current window

 2 to get the screen size, either 40 or 80 columns

SAVE -- Save a BASIC program in memory to disk

 SAVE "[[@]drive:]filename" [,device_number]

This command copies a BASIC program in the computer's BASIC memory

area into a PRoGram-type disk file. If the file already exists, the

program is NOT stored and the error message 'FILE EXISTS' is reported.

If the filename is preceded with an '@0:', then if the file exists it

will be replaced by the program in memory. Because of some problems

with the 'save-with-replace' option on older disk drives, using this

option is not recommended if you do not know what disk drive is being

used (DELETE the file before SAVEing). Pattern matching is not

allowed. In the case of dual drive systems, the drive number must be

part of the filename.

Use the VERIFY or DVERIFY command to compare the program in memory

with a program on disk. To save a binary program, use the BSAVE

command.

 SAVE "myprogram" Creates the PRG-type file MYPROGRAM

 on the default system disk and copies

 the BASIC program in memory into it.

 SAVE "@0:myprogram" Replaces the PRG-type file MYPROGRAM

 with a new version of MYPROGRAM. If

 MYPROGRAM doesn't exist, it's created.

 SAVE F$,9 Saves a program whose name is in F$

 on disk unit 9.

SCALE -- Set the logical dimension of the graphic screen

 [*** NOT YET IMPLEMENTED ***]

SCNCLR -- Clear a text or graphic screen

 SCNCLR [color]

This command will clear the current text window if [color] omitted,

otherwise it will clear the current graphic screen using the given

color value. See also SCREEN CLR.

 SCNCLR Clears the text screen. If a window is defined

 it clears only the window area.

 SCNCLR 0 Clears the current graphic screen with color 0.

SCRATCH -- Delete files from disk directory

 Recover accidentally deleted files

 SCRATCH "filespec" [,Ddrive] [<ON|,>Udevice] [,R]

SCRATCH, ERASE, or DELETE are different names of the same command.

They are used to delete a file from a disk directory, or optionally to

recover if possible an accidentally deleted file. The diskette must

not be 'write protected', or a 'WRITE PROTECT ON' error is reported.

WARNING: Deleting a file will destroy all existing data in that file.

Be extremely careful if you are using pattern matching, which can

delete any or all files. In direct mode, you are asked to confirm what

you are doing with 'ARE YOU SURE?'. Type 'Y' and press <RETURN> to

proceed, or type any OTHER CHARACTER and press <RETURN> to cancel the

command. In program mode there is no confirmation prompt.

Upon completion, in direct mode only, the computer will display the

number of files deleted.

Refer to your disk manual for other details. Different disk drives

implement slightly different pattern matching rules or support

features such a specially protected files.

If the 'R'ecover option is present and the DOS supports it, a deleted

file can be recovered if nothing else has been written to the diskette

since the file was accidentally deleted. You will still be asked to

confirm the operation, and upon completion the computer will display

the number of files restored.

 SCRATCH "oldfile" Deletes the file OLDFILE from the disk

 in the default system drive.

 SCRATCH "file.*" Deletes all files beginning with FILE.

 SCRATCH (F$), U(DD) Deletes the file whose name is in F$

 from the disk in device DD.

 SCRATCH "SAVEME", R Attempt to recover the program SAVEME.

SCREEN -- Graphic command

The SCREEN command is used to initiate a graphic command. It always

precedes another command word which identifies the graphic operation

to be performed:

SCREEN CLR - Set graphic screen color

 SCREEN CLR color#

Clears (erases) the currently opened graphic screen using the given

color value. Use SCNCLR to clear a text screen. See also SCNCLR.

SCREEN DEF - Define a graphic screen

 SCREEN DEF screen#, width, height, depth

 screen# 0-1

 width 0=320, 1=640, 2=1280

 height 0=200, 1=400

 depth 1-8 bitplanes (2-256 colors)

Defines a logical screen (numbered 0 or 1), specifies its size and how

many colors (bitplanes) it has. It does not allow access to the

screen and it does not display the screen. The screen must be defined

before it is opened for viewing and/or drawing to.

SCREEN SET - Set draw and view screens

 SCREEN SET DrawScreen#, ViewScreen#

 draw screen # 0-1

 view screen # 0-1

This command specifies which logical screen is to be viewed and which

logical screen is to be accessed by the various draw commands. The

screen must be defined and opened first. Both the draw and the view

screen can be, and usually are, the same logical screen. For double

buffering, they are different.

SCREEN OPEN - Open a screen for access

 SCREEN OPEN screen# [,error_variable]

 screen# 0-1

 error_variable [*** NOT YET IMPLEMENTED ***]

This command actually sets up the screen and allocates the necessary

memory for it. If it's the view screen it will be displayed. If it's

the draw screen, it can now be drawn to. If there is not enough memory

for the screen, 'NO GRAPHICS AREA' is reported and the screen is not

opened.

SCREEN CLOSE - Close a screen

 SCREEN CLOSE screen#

 screen# 0-1

This command closes a logical screen, ending access to it by the draw

commands if it's the draw screen and restoring the text screen if it's

the view screen. SCREEN CLOSE deallocates any memory reserved for the

screen.

 SAMPLE GRAPHIC PROGRAM:

 1 TRAP 170 in case of error want text screen

 10 GRAPHIC CLR initialize graphics

 20 SCREEN DEF 1,0,0,2 define a 320x200x2 graphic screen

 30 SCREEN OPEN 1 open it

 40 PALETTE 1,0, 0, 0, 0 define screen 1 color 0 = black

 50 PALETTE 1,1, 15, 0, 0 define screen 1 color 1 = red

 55 PALETTE 1,2, 0, 0,15 define screen 1 color 2 = blue

 60 PALETTE 1,3, 0,15, 0 define screen 1 color 3 = green

 70 SCREEN SET 1,1 make it the view screen

 80 SCNCLR 0 clear screen with palette color 0

 90 BORDER 0 set border color to color 0

100 PEN 0,1 make draw pen = color 1 (red)

110 LINE 100,100, 150,150 draw a diagonal red line

120 PEN 0,2 make draw pen = color 2 (blue)

130 BOX 50,50, 50,80, 80,50, 80,80 draw a blue box

140 PEN 0,3 make draw pen = color 3 (green)

150 CHAR 25,50, 1,1,2, "WORDS" draw green text

160 SLEEP 5 pause for 5 seconds

170 SCREEN CLOSE 1 close graphic, get text screen

180 PALETTE RESTORE restore normal system colors

190 BORDER 6 restore normal border color

200 END

SET -- Set various system parameters

The SET command is used to set a system parameter. It always precedes

another command word which identifies the parameter to be changed:

SET DEF - Set default system disk drive

 SET DEF device

The BASIC DOS commands default to disk unit 8. Use SET DEF to change

which device these commands default to. This command does not renumber

a disk device, use SET DISK for that. Commands which specify a device

will still access the device they specified. A program can be made

more "user friendly" by either not specifying a drive (thus using the

user's preferred drive) or by specifying device 1. Device number 1

means "use the system default drive, whatever its number is."

 10 DIR gets directory of device 8

 20 DIR U1 gets directory of device 8

 30 DIR U10 gets directory of device 10

 40 SET DEF 10 change the default drive to unit 10

 50 DIR gets directory of device 10

 60 DIR U1 gets directory of device 10

 70 DIR U8 gets directory of device 8

SET DISK - Change a disk device number

 SET DISK oldnumber TO newnumber

Use this command to renumber (change) a disk drive's unit number. Not

all drives can be renumbered -- refer to your disk drive manual for

details. This command sends to the disk's command channel the

conventional CBM serial disk drive "M-W" command. See also the DISK

command, which lets you send any command to a disk drive.

 SET DISK 8 TO 10 Change unit 8's number to 10

Because the built-in C64DX drives always take precedence over serial

bus drives, this is one way to get the built-in drive "out of the way"

so that you can access a serial bus drive #8.

SGN -- Get the sign of a number

 SGN (expression)

The SiGN function returns the sign of a numeric expression as follows:

 If the expression is < 0 (negative) returns -1

 If the expression is = 0 (zero) returns 0

 If the expression is > 0 (positive) returns 1

SIN -- Sine function

 SIN (expression)

This function returns the sine of X, where X is an angle measured in

radians. The result is in the range -1 to 1.

 X = SIN (pi/4) Result is X=0.707106781

To get the sine of an angle measured in degrees, multiply the numeric

expression by pi/180.

SLEEP -- Pause program execution of a specified period of time

 SLEEP seconds

Temporarily suspends execution of your program for 1 to 65535 seconds.

SLOW -- Set system speed to 1.02MHz

SLOW is used primarily to directly access "slow mode only" devices

such as the SID sound chips. FAST is the default system speed.

SOUND -- Produce sound effects

 SOUND v, f, d [,[dir] [,[m] [,[s] [,[w] [,p]]]]]

 v = voice (1-6)

 f = frequency (0-65535)

 d = duration (0-32767)

 dir = step direction (0(up), 1(down), or 2(oscillate)) default=0

 m = min frequency (0-65535) default=0

 s = sweep (0-65535) default=0

 w = waveform (0=triangle,1=saw,2=square,3=noise) default=2

 p = pulse width (0-4095) 50% duty cycle=default=2048

The sound command is a fast and easy way to create sound effects and

musical tones. The first three parameters are required to select the

voice, frequency, and duration of the tone. The duration is specified

in "jiffies" (60 jiffies = 1 second).

Optionally, you can specify a waveform and, for square waves, the

pulse width. The SOUND command can sweep a voice through a series of

equally-spaced frequencies. The direction of the sweep, minimum and

maximum frequencies can be programmed. If time expires before the

sweep is done, the sound stops. If the minimum or maximum frequency is

reached before time expires, the sound repeats.

For programming details, refer to the SID hardware documentation. Use

the VOLume command to change the volume of the sound. Note that the

TEMPO command affects PLAY strings only, not SOUND effects.

 FREQout = (f * 0.0596) Hz

 PWout = (p / 40.95) %

Each voice can be programmed separately and played simultaneously for

a wide variety of sound effects. Once a sound effect is initiated,

BASIC execution continues with the next statement while the sound

plays out, allowing you to combine and control graphics, animation,

and sound from a BASIC program. The examples below include information

about how to generate precise tones for exact times, but for most

casual users trial and error are perfectly acceptable! (Note that the

values used are for 60Hz (NTSC) systems):

Using voice 1, emit a square-wave, 440Hz tone for 1 second. Note that

440Hz = 7382 * 0.0596 using the above formula.

 SOUND 1, 7382, 60

Using voice 2, sweep from 100Hz (m=1638) to 440Hz (f=7382) in

increments of 1Hz (s=17). The time required to do this can be

calculated as t=(f-m)/s, so t=336 jiffies.

 SOUND 2, 7382, 336, 0, 1678, 17

Using voice 3, make a neat sound using an oscillating sweep (dir=2)

and a sawtooth waveform (w=1) for 3 seconds (t=180).

 SOUND 3, 5000, 180, 2, 3000, 500, 1

SPC -- Space PRINT output

 SPC (number)

The SPaCe function is used to format PRINTed data to the screen, a

printer, or a file. It specifies the number of spaces to be skipped,

from 0 to 255. A semicolon (';') is always assumed to follow SPC, even

if it appears at the end of a print line.

The SPC function works a little differently on screen, printer and

disk output. On the screen, SPC skips over characters already on the

screen, which is not the case with printer and disk output. On

printers, if the last character on a line is skipped, the printer

will automatically perform a carriage return and linefeed.

 PRINT "123";SPC(3);"456" Displays '123 456'

 PRINT "X";SPC(5) :PRINT"X" Displays 'X X'

See also the TAB function. A better way to format PRINT output is with

PRINT USING.

SPRCOLOR -- Set multicolor sprite colors

 SPRCOLOR [sprite_mc1] [,sprite_mc2]

Use the SPRITE command to set up a multicolor sprite, and use SPRCOLOR

to set the additional colors. Note that these colors are common to all

multicolor sprites. The color values must be in the range (0-15). Use

the RSPCOL0R function to get the current multicolor sprite colors, and

RSPRITE to get the current sprite foreground color.

SPRDEF -- Define a sprite pattern

 [*** NOT EXPECTED TO BE IMPLEMENTED ***]

SPRITE -- Turn a sprite on or off, and set its characteristics

SPRITE number [,[on] [,[color] [,[priority] [,[x_exp] [,[y_exp] [,mode]]]]]]

The SPRITE command allows you set all of the characteristics of a

sprite. Use the MOVSPR command to position it or set it in motion.

Use the SPRCOLOR to set the multicolor sprite colors, if you are using

multicolor sprites.

All the parameters except the sprite number are optional. If you don't

specify a parameter then it won't be changed.

 number = sprite number (0-7)

 on = enable (1) or disable(0)

 color = sprite foreground color (0-15)

 priority= sprite to display data priority:

 0 means sprite goes over screen data

 1 means sprite goes under screen data

 x,y_exp = sprite expansion on (1) or off (0)

 mode = sprite mode:

 0 high resolution

 1 multicolor

The SPRITE command does not define a sprite. The sprite definitions

must be loaded into the sprite area first ($600-$7FF). Use the BLOAD

and BSAVE commands. [*** THIS MAY CHANGE ***] A sprite is 24 pixels

wide and 21 pixels high. Each sprite definition requires 63 ($40 hex)

bytes:

 $600 Sprite 0 definition

 $640 Sprite 1 definition

 $680 Sprite 2 definition

 $6C0 Sprite 3 definition

 $700 Sprite 4 definition

 $740 Sprite 5 definition

 $780 Sprite 6 definition

 $7C0 Sprite 7 definition

Use the RSPRITE function to read a sprite's characteristics, or the

RSPPOS function to read a sprite's position. The RSPCOLOR function

is used to get the current multicolor sprite colors.

 10 BLOAD"sprite 1 data", Load sprite 1's definition

 P(DEC("640"))

 20 SPRITE 1, 1, 2 Turn it on, make it red

 30 MOVSPR 1, 24, 50 Put it at top-leftmost corner

 40 SPRSAV 1, 2 Copy sprite 1 definition to 2

 50 SPRITE 2, 1, 7 Turn on sprite 2 make it yellow

 60 MOVSPR 2, 320, 229 Put it at bottom-rightmost corner

 70 BSAVE"sprite 2 data", Save sprite 2

 P(DEC("680")) TO P(DEC("6C0"))

 80 SPRITE 1, 0 Turn off sprite 1

 90 SPRITE 2, 0 Turn off sprite 2

SPRSAV -- Copy a sprite definition

 SPRSAV source, destination

Use this command to copy a sprite's data (shape) to another sprite or

into a string variable, or copy a shape from a string variable into a

sprite. You can have many different sprite shapes in memory at one

time, all stored in strings. This makes it possible to animate

sprites from BASIC by quickly "flipping through" shapes, using each

shape like a frame from a movie film.

 SPRSAV 0, A$ copy the data (shape) of sprite 0 into A$

 SPRSAV A$, 2 copy the data (shape) in A$ into sprite 2

 SPRSAV 1, 2 copy the data (shape) in sprite 1 to sprite 2

STASH -- (see the DMA command)

SQR -- Square root function

 SQR (number)

This function returns the SQuare Root of the given numeric expression.

The numeric expression must not be negative or an 'ILLEGAL QUANTITY'

error is reported.

 A = SQR(10) Result is A = 3.16227766

STEP -- See FOR/NEXT/STEP

STOP -- Halt program execution

When STOP is executed, the computer immediately stops running the

program and reports 'BREAK IN LINE xx'. No variables are cleared and

files are not closed.

This command is usually used while debugging (fixing) a BASIC program,

since it lets you stop at a specific place, examine variables, change

variables, and restart the program where it was halted (see CONTinue

command) or some other line (see GOTO). In many cases, you can even

change the program and use GOTO to resume execution with variables

and open channels intact.

SWAP -- (see the DMA command)

STR$ -- Get the string representation of a number

 STR$ (number)

The STRing function returns a string identical to PRINT's output of

the given numeric expression. See PRINT for details regarding the

format of numeric output. STR$ is the opposite of VAL.

 A$ = STR$(123) Result is A$ = " 123"

 A$ = STR$(-123) Result is A$ = "-123"

 A$ = STR$(.009) Result is A$ = " 9E-03"

SYS -- Call a ROM routine or user machine language routine

 SYS address [,[a] [,[x] [,[y] [,[z] [,s]]]]]

This statement performs a call to a machine language routine at the

specified address (range 0-65535, $3000-$FFFF) in a memory bank set

up previously by the BANK command.

The microprocessor's registers are loaded with the values specified in

the parameters following the address (if given) and a JSR (Jump

SubRoutine) instruction is performed. When the called routine ends

with an RTS (ReTurn from Subroutine), the microprocessor's registers

are saved and control is returned to the BASIC program. The

microprocessor's registers can be examined with the RREG command.

Because this command instructs the computer's microprocessor (CPU) to

perform something, extreme care should be taken in its use. It can

easily crash the computer if you do something wrong (press the reset

button to reboot). Also see the BOOT SYS command.

 BANK 128: SYS DEC("FF5C") Call the Kernel's PHOENIX routine.

 BANK 128: SYS DEC("FF81") Reset the Screen Editor

 10 BANK 128

 20 BLOAD"user routine",P(DEC("1800")) Load a user routine

 30 SYS DEC("1800"), areg, xreg Call it with args in A and X

 40 RREG areg, xreg, , , sreg Get args back in A, X, and S

 50 carry = (sreg AND 1) Get carry flag from S

 60 PRINT "ACCUMULATOR = ";HEX$(areg) Display registers

 70 PRINT "X REGISTER = ";HEX$(xreg)

 80 PRINT "CARRY FLAG = ";carry

See the USR function for another way to call machine language

routines.

TAB -- Space PRINT output

 TAB (number)

The TAB function is used to format PRINTed data to the screen, a

printer, or a file. It's primarily for screen text output, moving

the cursor to the specified column (plus one) as long as the current

print position is not already beyond that point (for example, if the

current print position is the first column, TAB(1) would print

subsequent text beginning in column 2). If the current print position

is already beyond the column specified by the TAB function, nothing is

done. For disk and printer output, TAB works exactly like the SPC

function (see SPC).

A semicolon (';') is always assumed to follow TAB, even if it appears

at the end of a print line.

 PRINT "TEXT";TAB(10);"HERE" Result is 'TEXT HERE'

 PRINT "TEXT";SPC(10);"HERE" Result is 'TEXT HERE'

The above examples illustrate the difference between TAB and SPC. See

also the SPC function. A better way to format PRINT output is with

PRIUT USING. Don't confuse the TAB function with the TAB character,

CHR$(9), which is used to format data using the programmable TAB

stops.

TAN -- Tangent function

 TAN (expression)

This function returns the tangent of the numeric expression, measured

in radians. If the result overflows, TAN(pi/2) for example, an

'OVERFLOW' error is reported.

 X = TAN(1) Result is X=1.55740772

To get the tangent of an angle measured in degrees, multiply the

numeric expression by pi/180.

TEMPO -- Set the tempo (speed) of a PLAY string

 TEMPO rate

Use this command to adjust the tempo (speed) of music playback by the

PLAY command. The rate determines the duration of a whole note. The

default is 12, making a whole in 4/4 time last 2 seconds. The formula

is:

 duration = 24/rate

The higher the rate, the faster the note. The range is (1-255).

THEN -- See IF/THEN/ELSE

TO -- See FOR/NEXT/STEP. Also used as a subcommand.

TRAP -- Define an BASIC error handler

 TRAP [line_number]

When turned on, TRAP intercepts all BASIC execution error conditions

except 'UNDEF'D STATEMENT ERROR'. Even the STOP key can be TRAPped.

When an error occurs, BASIC saves the error's location, line number,

and error number. If TRAP is not set, BASIC returns to direct mode

and displays the error message and line number. If TRAP is set, BASIC

performs a GOTO to the line number specified in the TRAP statement and

continues executing.

Your BASIC error handling routine can examine the error number,

message, and the line number where the error occurred and determine

the proper course of action. The system error words are:

 ER Error Number

 EL Error Line (line where the error occurred)

 ERR$() Error Message

If ER is -1, then a BASIC error did not occur. The error routine

should check the disk status words, in case they were the cause of

the error:

 DS Disk Error Number

 DS$ Disk Error Message

Refer to the list of BASIC and Disk error messages in the appendix.

Note that an error in your TRAP routine cannot be trapped. The RESUME

statement can be used to resume execution -- see RESUME.

TRAP with no line number specified turns off error TRAPping.

 10 TRAP 90 enable trapping

 20 FOR I=-5 TO 5

 30 PRINT 5/I error when I=0

 40 NEXT

 50 TRAP turn trapping off

 60 END

 70 :

 90 PRINT ERR$(ER): RESUME NEXT error routine

TROFF -- Turn off trace mode

TRON -- Turn on trace mode

 TROFF

 TRON

Trace mode is used while debugging (fixing) a BASIC program. TRON

enables tracing, and TROFF disables tracing. When the program is run

and trace mode is on, the line number of the command that is being

executed is displayed on the screen. If there are three commands on

the line, the line number will be displayed three times, once each

time one of the commands is executed. Trace mode lets you know what

the computer is doing.

Trace mode works even when a graphic screen is being displayed, but

the line number is still displayed on the text screen so you won't be

able to see it until the graphic screen is turned off. If your program

is doing alot of PRINT statements, the display can seen a little

confusing.

Trace mode can be set in direct mode to trace the entire program, or

it can be turned on and off from within your program to let you trace

only selected portions of the program.

Trace mode has no effect on commands entered in direct (edit) mode.

The NEW command disables trace mode, but RUN and CLR do not.

 10 FOR I=-5 TO 5

 15 TRON

 20 PRINT 5/I

 25 TROFF

 30 NEXT

TYPE -- Display the contents of a sequential disk file

 TYPE "filename" [,Ddrive] [<,|ON>Udevice]

Use this command to print the contents of a PETSCII data file on the

screen. The file must contain lines no longer than 255 characters long

and terminated by a return character (CHR$(13)). Lines too long result

in a 'STRING TOO LONG' error.

TYPE "readme" display the contents of the README file on the screen

The command sequence below will print the contents of the README file

on a CBM serial bus printer in upper/lower case mode.

 OPEN 4,4,7: CMD4: TYPE"readme": CLOSE4

UNTIL -- See DO/LOOP/WHILE/UNTIL/EXIT

USR - Call a user defined machine language function

 USR (expression)

When this function is used, the program jumps to a machine language

subroutine whose starting address must be POKEd into system memory

(BANK 128) at address 760 (low byte) and 761 (high byte), or $2F8 hex.

The floating point value of the numeric expression is passed to the

routine in the Floating point ACCumulator (FACC), and the value to

be returned is taken from the FACC when the routine ends.

If the USR vector is not set up prior to making the USR call, an

'UNDEF'D FUNCTION' error is reported. The routine must be located in

the system bank. The BANK command does not affect USR.

Using this method of calling a machine language routine requires a

fair amount of set up and a good knowledge of the lower level math

routines built into BASIC. See the SYS command, which is more commonly

used to call a machine language routine.

The following program illustrates the basic steps required for

installing a USR routine and calling it:

 10 BANK 128 System bank for poke & load

 20 UV = DEC("1800") Where my routine is

 30 BLOAD "my user routines",P(UV) Load my routine

 40 POKE DEC("2F8"), UV AND 255, UV / 256 Set up USR address

 50 x = USR(123): PRINT X Call my routine with the

 the value 123, get back and

 print whatever my routine

 leaves in FACC

The following program actually works. It points the USR vector to the

BASIC math jump table entry for the routine which inverts the sign

of the number in the FACC. Type in positive & negative numbers:

 10 BANK 128 System bank for poke

 20 POKE DEC("2F8"), DEC("33"), DEC("7F") Set up USR address

 30 DO: INPUT"SIGNED NUMBER"; N Get number input

 40 : PRINT USR(N) Display USR output

 50 : LOOP UNTIL N=0 End if user types zero

USING -- See PRINT USING

VAL -- Get the numerical value of a string

 VAL (string)

The VALue function converts a string into a number. The conversion

starts with the first character and ends at the end of the string or

the first character that is not allowed in normal number input. Spaces

are ignored. If the first character of the string is not a legal

character, a zero is returned.

The VAL function works the same way the INPUT and READ commands do.

VAL is the opposite of STR$.

 X = VAL(" 123") Result is X = 123

 X = VAL("-123") Result is X = -123

 X = VAL(" 9E-02") Result is X = .09

VERIFY -- Compare a program or data in memory with a disk file

 VERIFY "filename" [,device_number [,relocate_flag]]

This command is just like a LOAD command, except instead of putting

the data read from a file into memory, the computer compares it to

what is already in memory. If there's any difference at all a 'VERIFY

ERROR' is reported.

The filename must be given, and pattern matching may be used. In the

case of dual drive systems, the drive number must be part of the

filename. If a device number is given, the file is sought on that

unit, which must be a disk drive. If a device number is not given,

the default system drive is used. See also DVERIFY.

Note: If the BASIC program in memory is not located at the same

address as the version on disk was SAVEd from, the files will not

match even if the program is otherwise identical.

The relocate_flag is used to VERIFY binary files. If the relocate_flag

is present and non-zero, the file will be compared to memory starting

at the address stored on disk when the file was SAVEd. The memory bank

used is the bank given in the last BANK statement. The ending address

is determined by the length of the disk file. The comparison halts

on the first mismatch or at the end of the file. The area to be

compared must be confined to the indicated memory bank. Do not use

the relocate_flag to verify BASIC programs. See also BVERIFY.

 VERIFY "myprogram"

Good: SEARCHING FOR 0:myprogram Bad: SEARCHING FOR 0:myprogram

 VERIFYING VERIFYING

 OK ?VERIFY ERROR

 VERIFY "PROG" Compares BASIC program in memory to file PROG

 on the default system disk.

 VERIFY FILE$,DRV Compares program in memory to a program whose

 name is in the variable FILE$ on the unit

 whose number is in DRV.

 VERIFY "0:PROG",8 Compares memory to BASIC program PROG on unit

 8, drive 0.

 BANK 128 Compares a binary file into memory. The

 VERIFY "BIN",8,1 address used comes from the disk file, but

 you must specify the memory bank.

VIEWPORT -- [*** CURRENTLY UNIMPLEMENTED ***]

VOL -- Set audio volume level

 VOL volume

 [*** THIS COMMAND WILL CHANGE ***]

This statement sets the volume level for SOUND and PLAY statements.

VOLUME can be set from 0 to 15, where 15 is the maximum volume. A

volume of 0 turns sound output off. VOLume affects all 3 voices.

Note that PLAY strings can change the volume, too.

WAIT -- Pause BASIC program until a memory state satisfied

 WAIT address, and_mask [,xor_mask]

The WAIT statement causes program execution to be suspended until data

at a specified memory location matches a given bit pattern. It's used

to pause your program until an event occurs.

The event could be an I/O state (such as a fire button or peripheral

port change), a hardware state (such as the raster position or RS232

status), or memory change caused by an interrupt event (such as a

keyboard scan).

The WAIT statement tells the computer to read (PEEK) a memory location

(0-65535) and AND the value it got with the number in and_mask

(0-255). If the result is zero, repeat the operation until the result

is not zero. This is like the following BASIC instructions, but much

faster:

 DO: result = PEEK(address): LOOP UNTIL (result AND and_mask) <> 0

This works if the state you are WAITing for is non-zero (a one or

"high" state). If you want to wait for a zero state (a "low" state),

you need to use the xor_mask option to "flip" the bits of the result.

Note that it's possible to "hang" your program indefinitely if the

state you are waiting for never happens or you specify the wrong data.

Press the STOP and RESTORE keys at the same time to get control back.

Be sure to use the BANK command before you tell the computer to WAIT

to specify which 64K memory bank the address is in. Note that a BANK

number greater than 127 (i.e., a bank number with the most significant

bit set) must be used to address an I/O location, such as the VIC

chip. Refer to the system memory map for details.

 10 BANK 128 Wait for the VIC raster to be

 20 WAIT DEC("D011"), 128 offscreen (want RC8 = 1)

 10 BANK 128 Wait for the VIC raster to be

 20 WAIT DEC("D011"), 128, 128 onscreen (want RC8 = 0)

 10 BANK 128

 20 WAIT DEC("D3"), 1 Wait for user to press <SHIFT> key

 30 WAIT DEC("D3"), 2 Wait for user to press <C=> key

 40 WAIT DEC("D3"), 4 Wait for user to press <CTRL> key

 50 WAIT DEC("D3"), 8 Wait for user to press <ALT> key

WHILE -- See DO/LOOP/WHILE/UNTIL/EXIT

WIDTH -- [*** CURRENTLY UNIMPLEMENTED ***]

WINDOW -- Set a text window

 WINDOW left_column, top_row, right_column, bottom_row [,clear]

This command defines a logical text screen window. All text I/O will

be confined to this window. The row parameters must be in the range

(0-24), and the column parameters must be in the range (0-79) for

80-column screens or (0-39) for 40-column screens. The parameters are

always referenced to the physical screen (i.e., you cannot define a

window within a window). If the clear flag is given, the new window

area will be cleared after it's set up.

Use the RWINDOW function to get the current window size.

You are responsible for saving and restoring screen data in all

windows because the WINDOW command simply sets the window margins. The

WINDOW command does not draw a border around a window. All color

commands and screen modes (such as scroll disable, TAB stops, etc.)

are global.

Two consecutive "home" characters will reset the window definition

back to the physical screen.

 WINDOW 0,0,39,24 Define a window in 80-column mode

 that is the left half of the screen.

 WINDOW 40,0,79,24 Define a window in 80-column mode

 that is the right half of the screen.

 WINDOW 0,0,79,12 Define a window in 80-column mode

 that is the top half of the screen.

 WINDOW 0,13,79,24 Define a window in 80-column mode

 that is the bottom half of the screen.

 WINDOW 20,6,59,12,1 Define a window in 80-column mode in

 the center of the screen and clear it.

 The window is 12 characters high and

 40 characters wide.

 PRINT CHR$(19)CHR$(19); Reset the window back to full screen

 in either 40 or 80-column mode and put

 the cursor in top left corner.

XOR -- Exclusive-Or function

 XOR (number,number)

The XOR function returns a numeric value equal to the logical XOR of

two numeric expressions, operating on the binary value of the unsigned

16-bit integers in the range (0 to 65535). Numbers outside this range

result in an 'ILLEGAL QUANTITY' error.

 X = XOR(4,12) Result is X= 8

 X = XOR(2,12) Result is X=14

3.1.4. VARIABLES

The C64DX uses three types of variables in BASIC:

 floating point X

 integer X%

 string X$

 Normal NUMERIC VARIABLES, also called floating point variables,

can have any from up to nine digits of accuracy. When a number becomes

larger than nine digits can show, as in +10 or -10, the computer

displays it in scientific notation form, with the number normalized to

1 digit and eight decimal places, followed by the letter E and the

power of ten by which the number is multiplied. For example, the

number 12345678901 is displayed as 1.23456789E+10.

 INTEGER VARIABLES can be used when the number is a signed whole

number from +32767 to -32768. Integer data is a number like 5, 10, or

-100. Integers take up less space than floating point variables,

particularly when used in an array.

 STRING VARIABLES are those used for character data, which may

contain numbers, letters, and any other character that the computer

can make. An example of string data is "Commodore C64DX".

 VARIABLE NAMES may consist of a single letter, a letter followed

by a number, or two letters. Variable names may be longer than 2

characters, but only the first two are significant. An integer is

specified by using the percent (%) sign after the variable name.

String variables have a dollar sign ($) after their names.

 EXAMPLES:

 Numeric Variable Names: A, A5 , BZ

 Integer Variable Names: A%, A5%, BZ%

 String Variable Names : A$, A5$, BZ$

 ARRAYS are lists of variables with the same name, using an extra

number (or numbers) to specify an element of the array. Arrays are

defined using the DIM statement, and may be floating point, integer,

or string variable arrays. The array variable name is followed by a

set of parentheses () enclosing the number of the variable in the

list.

 EXAMPLE:

 A(7), BZ%(11), A$(87)

 Arrays can have more than one dimension. A two dimensional array

may be viewed as having rows and columns, with the first number

identifying the row and the second number identifying the column (as

if specifying a certain grid on the map).

 EXAMPLE:

 A(7,2), BZ%(2,3,4), Z$(3,2)

 RESERVED VARIABLE NAMES are names that are reserved for use by

the computer, and may not be used for another purpose. These are the

variables DS, DS$, ER, ERR$, EL, ST, TI, and TI$. KEYWORDS such as TO

and IF or any other names that contain KEYWORDS, such as RUN, NEW, or

LOAD cannot be used.

 ST is a status variable for input and output (except normal

screen/keyboard operations). The value of ST depends on the results of

the last I/O operation. In general, if the value of ST is 0 then the

operation was successful.

 TI and TI$ are variables that relate to the real-time clock built

into the C64DX. The system clock is reset to zero when the system is

powered up or reset, and can be changed by the user or a program.

 TI$="hh:mm:ss.t" Allows optional colons to delimit parameters and

 allows input to be abbrieviated (eg., TI$="h:mm"

 or even TI$=""), defaulting to "00" for

 unspecified parameters. 24-hour clock (00:00:00.0

 to 23:59:59.9).

 TI 24-hour TOD converted into tenths of seconds.

 The value of the clock is lost when the computer is turned off.

It starts at zero when the computer is turned on, and is reset to zero

when the value of the clock exceeds 23:59:59.9.

 The variable DS reads the disk drive command channel, and returns

the current status of the drive. To get this information in words,

PRINT DS$. These status variables are used after a disk operation,

like DLOAD or DSAVE, to find out why the error light on the disk drive

is blinking.

 ER, EL, and ERR$ are variables used in error trapping routines.

They are usually only useful within a program. ER returns the last

error encountered since the program was RUN. EL is the line where the

error occurred. ERR$ is a function that allows the program to print

one of the BASIC error messages. PRINT ERR$(ER) prints out the proper

error message.

3.1.5. OPERATORS

 The BASIC OPERATORS include ARITHMETIC, RELATIONAL, and LOGICAL

OPERATORS. The ARITHMETIC operators include the following signs:

 + addition

 - subtraction

 * multiplication

 / division

 ^ raising to a power (exponentiation)

 On a line containing more than one operator, there is a set order

in which operations always occur. If several operators are used

together, the computer assigns priorities as follows. First

exponentiation, then multiplication and division, and last, addition

and subtraction. If two operators have the same priority, then

calculations are performed in order from left to right. If these

operations are to occur in a different order, BASIC 10.0 allows giving

a calculation a higher priority by placing parentheses around it.

Operations enclosed in parentheses will be calculated before any other

operation. Make sure that the equations have the same number of left

and right parentheses, or a SYNTAX ERROR message is posted when the

program is run.

 There are also operators for equalities and inequalities, called

RELATIONAL operators. Arithmetic operators always take priority over

relational operators.

 = is equal to

 < is less than

 > is greater than

 <= or =< is less than or equal to

 >= or => is greater than or equal to

 <> or >< is not equal to

 Finally, there are three LOGICAL operators, with lower priority

than both arithmetic and relational operators:

 AND

 OR

 NOT

 These are most often used to join multiple formulas in IF...THEN

statements. When they are used with arithmetic operators, they are

evaluated last (i.e., after + and -). If the relationship stated in

the expression is the true the result is assigned an integer of -1 and

if false an integer of 0 is assigned. There is also an XOR function.

 EXAMPLES:

 IF A=B AND C=D THEN 100 requires both A=B & C=D to be true

 IF A=B OR C=D THEN 100 allows either A=B or C=D to be true

 A=5:B=4:PRINT A=B displays 0

 A=5:B=4:PRINT A>3 displays -1

 PRINT 123 AND 15:PRINT 5 OR 7 displays 11 and 7

3.1.6. ERROR MESSAGES

3.1.6.1. BASIC ERROR MESSAGES

 The following error messages are displayed by BASIC. Error

messages can also be displayed with the use of the ERR$() function.

The error number refers only to the number assigned to the error for

use with this function. In direct mode, DOS error messages (DS$) are

automatically displayed. They are described in the section after this

one.

ERROR# ERROR NAME DESCRIPTION

--

 1 TOO MANY FILES There is a limit of 10 files OPEN at one

 time.

 2 FILE OPEN An attempt was made to open a file using

 the number of an already open file.

 3 FILE NOT OPEN The file number specified in an I/O

 statement must be opened before use.

 4 FILE NOT FOUND No file with that name exists on the

 specified drive.

 5 DEVICE NOT PRESENT The required I/O device not available.

 6 NOT INPUT FILE An attempt made to read data from a file

 that was opened for writing.

 7 NOT OUTPUT FILE An attempt was made to write data to a

 file that was opened for reading.

 8 MISSING FILE NAME Filename was missing in command.

 9 ILLEGAL DEVICE NUMBER An attempt was made to use a device

 improperly (SAVE to the screen, etc) or

 an illegal device number was specified.

 10 NEXT WITHOUT FOR Either loops are nested incorrectly, or

 there is a variable name in a NEXT

 statement that doesn't correspond with

 one in FOR.

 11 SYNTAX ERROR A statement is unrecognizable by BASIC.

 This could be because of missing or

 extra parenthesis, parameters, delimiters,

 or a misspelled keyword.

 12 RETURN WITHOUT GOSUB A RETURN statement was encountered when no

 GOSUB statement was active.

 13 OUT OF DATA A READ statement was encountered with no

 DATA left unREAD.

 14 ILLEGAL QUANTITY A number used as an argument is outside

 the allowable range (too big or too small)

 15 OVERFLOW The result of a computation is larger than

 the largest number allowed (1.701411834E+38)

 16 OUT OF MEMORY There is not enough memory for the program,

 or variables, or there are too many DO, FOR

 or GOSUB statements in effect.

 17 UNDEF'D STATEMENT A line number referenced doesn't exist.

 18 BAD SUBSCRIPT The program tried to reference an element

 of an array out of the range specified by

 a DIM statement, a missing DIM statement

 or a mistyped function name.

 19 REDIM'D ARRAY An array can only be DIMensioned once.

 20 DIVISION BY ZERO Division by zero is illegal.

 21 ILLEGAL DIRECT Command is only allowed to be used in a

 program.

 22 TYPE MISMATCH A numeric variable was used in place of

 a string variable or vice versa.

 23 STRING TOO LONG An attempt was made to assign more than

 255 characters to a string, or enter more

 than 160 characters from the keyboard, or

 to input more than 255 characters from a

 file.

 24 FILE DATA The wrong type of data was read from a

 file.

 25 FORMULA TOO COMPLEX An expression is too complicated for BASIC

 to process all at one time. Break it into

 smaller pieces or use fewer parentheses.

 26 CAN'T CONTINUE The CONT command does not work if the

 program was not RUN, there was an error

 or a line has been edited.

 27 UNDEFINED FUNCTION An attempt was made to use a user defined

 function that was never defined.

 28 VERIFY The program on disk does not match the

 program in memory.

 29 LOAD There was a problem loading.

 30 BREAK The program was halted by the STOP key or

 a STOP statement.

 31 CAN'T RESUME A RESUME statement was encountered without

 a TRAP in effect, or an error occurred in

 the trap handler itself.

 32 LOOP NOT FOUND The program encountered a DO statement and

 cannot find the corresponding LOOP.

 33 LOOP WITHOUT DO A LOOP was encountered without a DO

 statement active.

 34 DIRECT MODE ONLY A command was used in a program that can

 only be used in direct mode.

 35 NO GRAPHICS AREA A graphics command was used before a

 graphics screen was defined and opened.

 36 BAD DISK A BOOT SYS command failed because the disk

 could not be read.

 37 BEND NOT FOUND A BEND statement not found for BEGIN.

 38 LINE NUMBER TOO LARGE A line number cannot exceed 64000.

 39 UNRESOLVED REFERENCE Renumber failed because a referenced line

 number does not exist.

 40 UNIMPLEMENTED COMMAND The given command is not currently

 implemented in this computer.

 41 FILE READ There was a problem reading data from a

 disk file. Similar to LOAD ERROR.

3.1.6.2. DOS ERROR MESSAGES

 The following error messages are returned through the DS and DS$

variables. If a disk command is type in direct mode, these messages

will be displayed automatically. NOTE: DOS message numbers less than

20 are advisory and are not necessarily errors. DOS messages may vary

slightly depending upon the drive model. Refer to your DOS manual for

details.

ERROR # DESCRIPTION

------- --

 00: OK (no error)

 01: FILES SCRATCHED (not an error)

 The following number (track) tells how many files were deleted

 by the scratch command.

 02: PARTITION SELECTED (not an error)

 The requested disk partition (subdirectory) has been selected.

 03: FILES LOCKED

 The requested file(s) have been locked.

 04: FILES UNLOCKED

 The requested file(s) have been unlocked.

 05: FILES RESTORED

 The requested file(s) have been recovered (undeleted).

 20: READ ERROR (block header not found)

 The disk controller is unable to locate the header of the

 requested data block. Caused by an illegal sector number, or

 the header has been destroyed.

 21: READ ERROR (no sync character)

 The disk controller is unable to detect a sync mark on the

 desired track. Caused by misalignment of the read/write head,

 no diskette is present, or unformatted or improperly seated

 diskette. Can also indicate a hardware failure.

 22: READ ERROR (data block not present)

 The disk controller has been requested to read or verify a

 data block that was not properly written. This error occurs in

 conjunction with the BLOCK commands and indicates an illegal

 track and/or sector request.

 23: READ ERROR (checksum error in data block)

 This error message indicates that there is an error in one or

 more of the data bytes. The data has been read into the DOS

 memory, but the checksum over the data is in error. This

 message may also indicate grounding problems.

 24: READ ERROR (byte decoding error)

 The data or header has been read into the DOS memory, but a

 hardware error has been created due to an invalid bit pattern

 in the data byte. This message may also indicate grounding

 problems.

 25: WRITE ERROR (write-verify error)

 This message is generated if the controller detects a mismatch

 between the written data and the data in the DOS memory.

 26: WRITE PROTECT ON

 This message is generated when the controller has been

 requested to write a data block while the write protect switch

 is depressed.

 27: READ ERROR

 This message is generated when a checksum error is in the

 header.

 28: WRITE ERROR

 This error message is generated when a data block is too long.

 29: DISK ID MISMATCH

 This message is generated when the controller has been

 requested to access a diskette which has not been initialized.

 The message can also occur if a diskette has a bad header.

 30: SYNTAX ERROR (general syntax)

 The DOS cannot interpret the command sent to the command

 channel. Typically, this is caused by an illegal number of

 file names, or patterns are illegally used. For example, two

 file names appear on the left side of the COPY command.

 31: SYNTAX ERROR (invalid command)

 The DOS does not recognize the command. The command must start

 in the first position.

 32: SYNTAX ERROR (invalid command)

 The command sent is longer than 58 characters.

 33: SYNTAX ERRROR (invalid file name)

 Pattern matching is invalidly used in the OPEN or SAVE

 command.

 34: SYNTAX ERROR (no file given)

 The file name was left out of the command or the DOS does not

 recognize it as such.

 39: SYNTAX ERROR (invalid command)

 This error may result if the command sent to the command

 channel (secondary address 15) is unrecognized by the DOS.

 40: UNIMPLEMENTED COMMAND

 Command is not implemented at this time.

 41: FILE READ

 The file cannot be read.

 50: RECORD NOT PRESENT

 Result of disk reading past the last record through INPUT# or

 GET# commands. This message will also occur after positioning

 to a record beyond end_of_file in a relative file. If the

 intent is to expand the file by adding the new record (with a

 PRINT# command), the error message may be ignored. INPUT and

 GET should not be attempted after this error is detected

 without first repositioning.

 51: OVERFLOW IN RECORD

 PRINT# statement exceeds record boundary. Information is

 truncated. Since the carriage return which is sent as a record

 terminator is counted in the record size, this message will

 occur if the total characters in the record (including the

 final carriage return) exceeds the defined size.

 52: FILE TOO LARGE

 Record position within a relative file indicates that disk

 overflow will result.

 53: BIG RELATIVE FILES DISABLED

 60: WRITE FILE OPEN

 This message is generated when a write file that has not been

 closed is being opened for reading.

 61: FILE NOT OPEN

 This message is generated when a file is being accessed that

 has not been opened in the DOS. Sometimes, in this case, a

 message is not generated: the request is simply ignored.

 62: FILE NOT FOUND

 The requested file does not exist on the indicated drive.

 63: FILE EXISTS

 The file name of the file being created already exists on the

 diskette.

 64: FILE TYPE MISMATCH

 The requested access mode is not possible using the filetype

 given.

 65: NO BLOCK

 The sector you tried to allocate with the B-A command was

 already allocated. The track and sector numbers hold the next

 higher, available track and sector. If the track number is

 zero, no higher sectors are free (try a lower track & sector).

 66: ILLEGAL TRACK AND SECTOR

 The DOS has attempted to access a track or block which does

 not exist in the format being used. This may indicate a

 problem reading the pointer of the next block.

 67: ILLEGAL SYSTEM T OR S

 This special error message indicates an illegal system track

 or sector.

 70: NO CHANNEL

 The requested channel is not available, or all channels are in

 use. A maximum of five sequential files may be opened at one

 time to the DOS. Direct access channels may have six opened

 files.

 71: DIRECTORY ERROR

 The BAM is corrupted. Try initializing the disk.

 72: DISK FULL

 Either the blocks on the diskette are used or the directory is

 at its entry limit. DISK FULL is sent when two blocks are

 available to allow the current file to be closed before its

 data is lost.

 73: DOS MISMATCH (also the powerup message)

 Initially given at powerup to identify the drive. On some

 drives this message is given as an error to indicate the

 media was formatted by an incompatible DOS.

 74: DRIVE NOT READY

 An attempt has been made to access the Floppy Disk Drive

 without any diskette present.

 75: FORMAT ERROR

 76: CONTROLLER ERROR

 The DOS has determined that the hardware is malfunctioning.

 77: SELECTED PARTITION ILLEGAL

 An attempt was made to access a partition as a subdirectory,

 but it has no directory track or does not meet the criteria

 of a directory partition.

 78: DIRECTORY FULL

 There is no more room in the directory sector for another file

 entry. Delete a file to make room, or change disks.

 79: FILE CORRUPTED

 The DOS has determined that a file is bad, probably having bad

 links. Prepare a new disk and copy the good files to it.

 Could be the result of an unsuccessful file recovery.

3.2. MACHINE LANGUAGE MONITOR

3.2.1. INTRODUCTION

 The MONITOR is a built in machine language program that lets the

user easily write machine language programs. The C64DX MONITOR

includes a machine language monitor, an assembler, and a disassembler.

 Machine language programs written using the MONITOR can run by

themselves, or be used as very fast 'subroutines' for BASIC programs.

Care must be taken to position the assembly language programs in

memory so that the BASIC program does not overwrite them and the

proper memory is in context at all times (including during

interrupts).

3.2.2. MONITOR COMMANDS

A ASSEMBLE - Assemble a line of 4502 code

C COMPARE - Compare two sections of memory

D DISASSEMBLE - Disassemble a line of 4502 code

F FILL - Fill a section of memory with a value

G GO - Start execution at specified address

H HUNT - Find specified data in a section of memory

L LOAD - Load a file from disk

M MEMORY - Dump a section of memory

R REGISTERS - Display the contents of the 4502 registers

S SAVE - Save a section of memory to a disk file

T TRANSFER - Transfer memory to another location

V VERIFY - Compare a section of memory with a disk file

E EXIT - Exit Monitor mode

. <period> - Assembles a line of 4502 code

> <greater-than> - Modifies memory

; <semicolon> - Modifies register contents

@ <at sign> - Display disk status

$ <hex> - Display hex, decimal, octal, and binary value

+ <decimal>

& <octal>

% <binary>

The MONITOR accepts binary, octal, decimal and hexadecimal values for

any numeric field. Numbers prefixed by one of the characters $ + & %

are interpreted as base 16, 10, 8, or 2 values respectively. In the

absence of a prefix, the base defaults to hexadecimal always.

The assembler will use the base page form of an instruction wherever

possible unless the address field is preceded by extra zeros to force

the absolute form (except binary notation).

The most significant byte of a 24-bit (3-byte) address field specifies

the memory BANK to implement at the time the given command is

executed. BANK bytes with the MSB set (i.e., banks greater than $7F)

mean "use the current system configuration", which always includes the

I/O area. If a BANK is not specified, BANK 0 is assumed.

 BANK 00 internal RAM bank 0 (System, BASIC program)

 BANK 01 internal RAM hank 1 (DOS, BASIC vars, color bytes)

 BANK 02 internal ROM bank 0 (DOS, C64 mode, CHRSETS)

 BANK 03 internal ROM bank 1 (Monitor, C65 mode)

 BANK 04-07 reserved for future expansion

 BANK 08-7F expansion RAM (graphic screens, RAM disk, etc.)

 BANK 80-FF MSB set means current config & I/O

The monitor supports the editor autoscroll feature for memory dumps

(forwards and backwards) and disassemblies (forward disassembly only).

To send dump output to a printer, from BASIC open a CMD channel to the

printer and enter the monitor (OPEN 4,4: CMD4: MONITOR). Give the dump

command desired; output will be to the printer.

3.2.3. MONITOR COMMAND DESCRIPTIONS

COMMAND: A

PURPOSE: Enter a line of assembly code.

SYNTAX: A <address> <mnemonic> <operand>

<address> A number indicating the location in memory to place the

 assembled binary code.

<mnemonic> A 4502 assembly language mnemonic, eg., LDA

<operand> The operand, when required, can be of any of the legal

 addressing modes.

A <RETURN> is used to indicate the end of the assembly line. If are

any errors on the line, a question mark is displayed to an error, and

the cursor moves to the next line. The screen can be used to correct

the error(s) on that line.

As each line is entered, the machine code is written to the specified

address and the line is automatically disassembled.

Base page and relative addresses are calculated for you, and the

appropriate word or byte relative mode selected automatically. To

force an absolute addressing mode, supply leading zeros if necessary.

 .A 1800 LDX #$00

 .A 1802

NOTE: A period (.) is equal to the ASSEMBLE command.

 . 1900 LDA #$23

COMMAND: C

PURPOSE: Compare two areas of memory

SYNTAX: C <address_1> <address_2> <address_3>

<address_1> A number indicating the start of the area of memory to

 compare against.

<address_2> A number indicating the end of the area of memory to

 compare against.

<address_3> A number indicating the start of the other area of

 memory to compare with.

The following example compares $8000-$9FFF in bank 0 with $8000-$9FFF

in bank 1. Addresses of data that does not match are printed on the

screen.

 C 8000 9FFF 18000

COMMAND: D

PURPOSE: Disassemble machine code

SYNTAX: D [address_1 [address_2]]

<address_1> A number setting the address to start the disassembly.

<address_2> An optional ending address of code to be disassembled.

The output of the disassembly is the same as that of an assembly, only

preceded by a comma instead of an A or period. The object code is also

displayed. Relative addresses in the disassembly are displayed as the

16-bit destination.

A disassembly listing can be modified using the screen editor. Any

changes to the mnemonic or operand on the screen, then hit the

<RETURN>. This enters the line and calls the assembler for

instructions. The object code cannot be modified this way.

A disassembly can be paged. Typing a D<RETURN> causes the next of

disassembly to be displayed. The autoscroll feature works in forward

mode only, because backwards disassembly is not possible because all

256 opcodes are defined in the 4502 processor.

The following example disassembles from ROM bank 3:

 D 3F000 3F005

 . 03F000 A9 09 LDA #$09

 . 03F002 A0 FF LDY #$FF

 . 03F004 18 CLC

 . 03F005 86 C2 STX $C2

Note that banks wrap to the next higher bank number.

COMMAND: F

PURPOSE: Fill a range of locations with a specified byte.

SYNTAX: F <address_1> <address_2> <byte>

<address_1> The first location to fill with the <byte>.

<address_2> The last location to fill with the <byte>.

<byte> The byte to fill with

This command is useful for initializing data structures or any other

RAM area.

 F 00600 007FF 00

Fills memory locations from $0600 to $07FF (RAM-0) with $00. Note that

banks wrap to the next higher bank number. The maximum area that can

be filled at one time is 64K, limited by the DMA device.

COMMAND: G

PURPOSE: Perform a JMP to a specified address

SYNTAX: G <address>

<address> The address where execution is to start. When the

 address is not specified, execution begins at the

 current PC. (The current PC can be viewed or changed

 with the R command.)

The GO command loads the processor's registers (displayable by the R

command) and performs a JMP to the specified starting address.

Caution is recommended in using the GO command. To return to MONITOR

mode after performing a GO command, a BRK instruction must end the

called routine. Also, the BANK specified must be able to handle

interrupts (note that BANK bytes less than $80 do NOT include the

operating system or I/O space).

 G FFC800

JuMPs to address $C800 in bank $FF (system configuration).

COMMAND: H

PURPOSE: Hunt through memory within a specified range for all

 occurences of a set of bytes.

SYNTAX: H <address_1> <address_2> <data>

<address_1> Address to start at

<address_2> Last address

<data> Data to search for. May be a number, sequence of

 numbers, or a PETSCII string.

 H 02000 0FFFF 46 52 45 44

Hunts for the series of bytes $46, $52, $45, $44 in memory bank 0

beginning at address $2000 and ending at $FFFF. The addresses of

matches is displayed.

 H 0200 0FFFF 'FRED

Hunts for the PETSCII string following an apostrophe. Note that banks

wrap to the next higher bank number.

COMMAND: L

PURPOSE: Load a file from disk.

SYNTAX: L <"filename"> [,device [,load_address]]

<"filename"> Is a filename in quotes.

[device] Is a number indicating the device to load from.

[load_address] Optional load address. If not given, the file is

 loaded into memory at the 16-bit address stored on

 disk (always RAM bank 0).

The LOAD command causes a file to be loaded into memory. If the load

address (including BANK) is given, the data is placed there. Otherwise

the file is loaded into RAM bank 0 at the 16-bit load address

specified by the first two bytes read from the PRG (program) type

file. An error occurs if a load overflow the specified bank.

 L "filename"

Loads "filename" from default system drive into RAM bank 0 at the

address read from the file.

 L "filename",+10,80000

Loads "filename" from drive 10 (notice you must specify decimal for

the drive number, or use hex equivalent) into expansion memory bank

8 at address $0000. Note that spaces between parameters after the

filename are not permitted.

COMMAND: M

PURPOSE: Dump a section of memory in hex and PETSCII.

SYNTAX: M [address_1 [address_2]]

[address_1] Starting address of memory dump. If omitted, one page

 is displayed starting from the last address used.

[address_2] Ending address of memory dump. If omitted, one page

 is displayed starting at address_1.

Memory dump width is sized to 40 or 80 columns, depending upon the

text screen width. All data is displayed in hexadecimal and followed

by a PETSCII interpretation of the data in reverse field (non-printing

characters appear as periods).

The autoscroll keys will scroll the dump forwards or backwards. Paging

is also possible by typing M<RETURN>.

The hex field of dump can be edited, and memory will be updated after

a <RETURN> is typed on the edited line.

 M 29000 2900C

 >029000 3C 66 6E 6E 60 62 3C 00 :<FNN-B<.

 >029008 46 41 49 54 20 4C 55 58 :FAIT LUX

COMMAND: R

PURPOSE: Display "shadow" 4502 registers. The PC (address),

 SR (status), A,X,Y,Z registers, and SP (stack pointer)

 are displayed.

SYNTAX: R

 R

 PC SR AC XR YR SP

 ; BA1234 00 00 00 00 FB

The address field contains the 8-bit bank plus the 16-bit segment

address. The register dump can be edited by changing any field and

pressing return. The data is used by the G (JMP) and J (JSR) commands.

COMMAND: S

PURPOSE: Save a section of memory in a disk file.

SYNTAX: S <"filename">,<device>,<address_1>,<address_2>

<"filename"> Is a filename in quotes.

<address_1> Starting address of memory to be saved.

<address_2> Ending address PLUS ONE of memory to be saved.

The SAVE command creates a PRG (program) type file and copies data

into it from the specified memory area. All parameters are required.

 S "filename",8,A0000,AFFFF

Saves expansion bank A in "filename" on drive 8 (you must specify

decimal for the drive number, or use hex equivalent). The last byte

at $FFFF will not be saved. Note that spaces between parameters after

the filename are not permitted. The 16-bit segment address is saved

as the first two bytes of the file, but the BANK address is not saved.

The BANK wraps automatically to the next higher bank number, but note

that LOAD is restricted to one bank, 64K bytes maximum.

COMMAND: T

PURPOSE: Transfer (copy) memory from one memory area to another

SYNTAX: T <address_1> <address_2> <address_3>

<address_1> Starting address of data to be copied.

<address_2> Ending address of data to be copied.

<address_3> Starting address of new location to copy data to.

Data can be copied forwards or backwards to any location, even within

the source range (eg., shift data up or down one byte) without any

problem. An automatic compare is performed for each byte, and

mismatches displayed on the screen.

Because of the compare feature, it's not recommended you use the T

command to copy data into write-only registers (the palette, for

example). It works, but all the compares will fail.

 T 32000 3BFFF 82000

Copies BASIC ROM area to expansion RAM.

COMMAND: V

PURPOSE: Verify (compare) a disk file with the memory contents.

SYNTAX: V <"filename"> [,device [,load_address]]

<"filename"> Is a filename in quotes.

[device] Is a number indicating the device the file is on.

[load_address] Optional load address. If not given, the file is

 compared to memory at the 16-bit address stored on

 disk (always RAM bank 0).

The Verify command causes a file to be read and compared to memory. If

the load address (including BANK) is given, the data read is

compared to data there. Otherwise the data read is compared to RAM

bank 0 at the 16-bit load address specified by the first two bytes

of the PRG (program) type file. If there is a mismatch, the message

'VERIFYING ERROR' is displayed. If the data matches, nothing is

displayed. An error occurs if the compare address overflows the

specified bank.

 V "filename"

Compares "filename" from the default system drive to RAM bank 0 at the

address read from the file.

 V "filename",+10,80000

Compares "filename" from drive 10 (notice you must specify decimal for

the drive number, or use hex equivalent) to expansion memory bank 8 at

address $0000. Note that spaces between parameters after the

filename are not permitted.

COMMAND: X

PURPOSE: Exit to BASIC

SYNTAX: X

COMMAND: > (greater than)

PURPOSE: Pokes data (1 to 16 bytes) into memory

SYNTAX: > <address> [byte]...

<address> Address to start "poking" or displaying

[byte] Data to be "poked". If not given, nothing is changed

 and the memory at that location is "peeked".

 Successive bytes are poked into successive locations.

COMMAND: @ (at sign)

PURPOSE: Disk operation: send command, display directory,status

SYNTAX: @ [device] [,command]

[device] Disk device number

[command] Optional command (see DOS manual for specific commands)

This command can be used to read a drive's status message, send a

drive a DOS command, or display a disk directory.

 @ displays status of default system drive

 @9 displays status of drive 9

 @+10 or @A displays status of drive 10

 @,$ displays directory of default drive

 @9,$ displays status of drive 9

 @,S0:*=SEQ displays all SEQ type files

 @,S0:FILE sends command to delete file "FILE"

3.3. EDITOR

3.3.1. EDITOR ESCAPE SEQUENCES

This section contains a definition of the escape sequences that are

present in the C64DX and a brief description of what each does.

ESCape sequences are given by hitting the <ESCAPE> key and then

another key. In PRINT strings, escape sequences are given by

printing the escape character CHR$(27) followed by another character.

In either case, the "other" character is defined as one of the

following:

KEY FUNCTION

--- --

 @ Clear from cursor to end of screen

 A Enable auto-insert mode

 B Set bottom of screen window at cursor position

 C Disable auto-insert mode (set overwrite mode)

 D Delete current line

 E Set cursor to non-flashing mode

 F Set cursor to flashing mode

 G Enable bell (control-G)

 H Disable bell

 I Insert line

 J Move to start of current line

 K Move to end of current line

 L Enable scrolling

 M Disable scrolling

 N Normal screen fields [not implemented on C64DX]

 O Cancel insert, quote, reverse, underline & flash modes

 P Erase from cursor to start of current line

 Q Erase from cursor to end of current line

 R Set screen to reverse video [not implemented on C64DX]

 S Set bold attribute (VIC-III colors 16-31)

 T Set top of screen window at cursor position

 U Unset bold attibute

 V Scroll up

 W Scroll down

 X Swap 40/80 column display output device

 Y Set default tab stops (8 spaces)

 Z Clear all tab stops

 [Set monochrome display (disable attributes)

 / Cancel insert, quote, rvs, ul & flash modes

] Set color display (enable attributes)

3.3.2. EDITOR CONTROL CODES

This section contains a definition of the control codes that are

present in the C64DX and a brief description of what each does.

Control codes are given by pressing the <CTRL> key at the same time as

another key. In PRINT strings, control codes are given by printing the

control character with the CHRS() function. Control codes appear

within quoted strings as reverse field characters. In any case, the

control characters are:

CHR$ KEYBOARD

VALUE CONTROL FUNCTION

----- -------- --

2 B Underline on

7 G Bell tone

9 I Forward TAB

10 J Line feed

11 K Disable case change <shift>C= key (was code 9)

12 L Enable case change <shift>C= key (was code 8)

14 N Set display upper/lower case mode

15 O Flash on

17 Q Cursor down

18 R Reverse on

19 S Home cursor

20 T Delete previous character

21 U Backup word

23 W Advance word

24 X Tab set/clear

26 Z Backup TAB

27 [Escape character

29] Cursor right

Shifted codes

130 Underline off

142 Set uppercase/graphic mode

143 Flash off

145 Cursor up

146 Reverse mode off

147 Clear screen

148 Insert one character

157 Cursor left

Color codes

 5 white

 28 red

 30 green

 31 blue

129 orange

144 black

149 brown

150 light red

151 light gray

152 medium gray

153 light green

154 light blue

155 dark gray

156 purple

158 yellow

159 cyan

Function keys

--

 3 Stop

 16 F9

 21 F10

 22 F11

 23 F12

 25 F13

 26 F14

 131 Run

 132 Help

 133 F1

 134 F3

 135 F5

 136 F7

 137 F2

 138 F4

 139 F6

 140 F8

3.4. KEKNEL

3.4.1. C64DX KERNEL ENTRY POINTS

[*** THE FOLLOWING VECTORS AND JUMP TABLES ARE NOT FINAL ***]

Where the default indirect vectors point to:

FF09 nirq ;IRQ handler

FF0B monitor_brk ;BRK handler (Monitor)

FF0D nnmi ;NMI handler

FF0F nopen ;open

FF11 nclose ;close

FF13 nchkin ;chkin

FF15 nckout ;ckout

FF17 nclrch ;clrch

FF19 nbasin ;basin

FF1B nbsout ;bsout

FF1D nstop ;stop key scan

FF1F ngetin ;getin

FF21 nclall ;clall

FF23 monitor_parser ;monitor command parser

FF25 nload ;load

FF27 nsave ;save

FF29 talk ;Low level serial bus routines

FF2B listen

FF2D talksa

FF2F second

FF31 acptr

FF33 ciout

FF35 untalk

FF37 unlisten

FF39 DOS_talk ;newDOS routines

FF3B DOS_listen

FF3D DOS_talksa

FF3F DOS_second

FF41 DOS_acptr

FF43 DOS_ciout

FF45 DOS_untalk

FF47 DOS_unlisten

FF49 Get_DOS

FF4B Leave_DOS

FF4D jmp spin_spout ;setup fast serial port for input or output

FF50 jmp close_all ;close all logical files for a given device

FF53 jmp c64mode ;reconfigure system as a c/64 (no return!)

FF56 jmp monitor_call ;map in Monitor & call it

FF59 jmp bootsys ;boot alternate system from disk

FF5C jmp phoenix ;call cold start routines, disk boot loader

FF5F jmp lkupla ;search tables for given la

FF62 jmp lkupsa ;search tables for given sa

FF65 jmp swapper ;swap to alternate display device

FF68 jmp pfkey ;program function key

FF6B jmp setbnk ;set bank for load/save/verify/open

FF6E jmp jsr_far ;JSR to any bank, RTS to calling bank

FF71 jmp jmp_far ;JMP to any bank

FF74 jmp lda_far ;LDA (X),Y from bank Z

FF77 jmp sta_far :STA (X),Y to bank Z

FF7A jmp cmp_far ;CMP (X),Y to bank Z

FF7D jmp primm ;print immediate (always JSR to this routine!)

FF80 <FF> ;release number of C65 Kernel ($FF=not released)

FF81 jmp cint ;init screen editor & display chips

FF84 jmp ioinit ;init I/O devices (ports, timers, etc.)

FF87 jmp ramtas ;initialize RAM for system

FF8A jmp restor ;restore vectors to initial system

FF8D jmp vector ;change vectors for user

FF90 jmp setmsg ;control OS messages

FF93 jmp (isecond) ;send sa after listen

FF96 jmp (italksa) ;send sa after talk

FF99 jmp memtop ;set/read top of memory

FF9C jmp membot ;set/read bottom of memory

FF9F jmp key ;scan keyboard

FFA2 jmp settmo ;old IEEE set timeout value

FFA5 jmp (iacptr) ;read a byte from active serial bus talker

FFA8 jmp (iciout) ;send a byte to active serial bus listener

FFAB jmp (iuntalk) ;command serial bus device to stop talking

FFAE jmp (iunlisten) ;command serial bus device to stop listening

FFB1 jmp (ilisten) ;command serial bus device to listen

FFB4 jmp (italk) ;command serial bus device to talk

FFB7 jmp readss ;return I/O status byte

FFBA jmp setlfs ;set la, fa, sa

FFBD jmp setnam ;set length and fn adr

FFC0 jmp (iopen) ;open logical file

FFC3 jmp (iclose) ;close logical file

FFC6 jmp (ichkin) ;open channel in

FFC9 jmp (ickout) ;open channel out

FFCC jmp (iclrch) ;close I/O channel

FFCF jmp (ibasin) ;input from channel

FFD2 jmp (ibsout) ;output to channel

FFD5 jmp load ;load from file

FFD8 jmp save ;save to file

FFDB jmp Set Time ;set internal clock

FFDE jmp Read Time :read internal clock

FFE1 jmp (istop) ;scan stop key

FFE4 jmp (igetin) ;get char from queue

FFE7 jmp (iclall) ;clear all logical files (see close all)

FFEA jmp ScanStopKey ;(was increment clock) & scan stop key

FFED jmp scrorg ;return current screen window size

FFF0 jmp plot ;read/set x,y coord

FFF3 jmp iobase ;return I/O base

FFF6 c65mode ;C64/C65 interface

FFF8 c65mode

FFFA nmi ;processor hardware vectors

FFFC reset

FFFE irq_kernel

3.4.2. C64DX EDITOR JUMP TABLE

[*** THE FOLLOWING VECTORS AND JUMP TABLES ARE NOT FINAL ***]

E000 cint ;initialize editor & screen

E003 disply ;display character in .a, color in .x

E006 lp2 ;get a key from IRQ buffer into .a

E009 loopS ;get a chr from screen line into .a

E00C print ;print character in .a

E00F scrorg ;get size of window (rows,cols) in .x, .y

E012 keyboard_scan ;scan keyboard subroutine

E015 repeat ;repeat key logic & CKIT2 to store decoded key

E018 plot ;read or set (.c) cursor position in .x, .y

E01B mouse_cmd ;install/remove mouse driver

E01E escape ;execute escape function using chr in .a

E021 keyset ;redefine a programmable function key

E024 editor_irq ;IRQ entry

E027 palette_init ;initialize VIC palette

E02A swap ;40/80 mode change

E02D window ;set top left or bottom right (.c) of window

E030 cursor ;turn on or off (.c) soft cursor

3.4.3. C64DX BASIC JUMP TABLE

[*** THE FOLLOWING VECTORS AND JUMP TABLES ARE NOT FINAL ***]

 Format Conversions

7F00 ayint ;convert floating point to integer

7F03 givayf ;convert integer to floating point.

7F06 fout ;convert floating point to ASCII string

7F09 val_1 ;convert ASCII string to floating point

7F0C getadr ;convert floating point to an address

7F0F floatc ;convert address to floating point

 Math Functions

7F12 fsub ;MEM - FACC

7F15 fsubt ;ARG - FACC

7F18 fadd ;MEM + FACC

7F1B faddt ;ARG - FACC

7F1E fmult ;MEM * FACC

7F21 fmultt ;ARG * FACC

7F24 fdiv ;MEM / FACC

7F27 fdivt ;ARG / FACC

7F2A log ;compute natural log of FACC

7F2D int ;perform BASIC INT() on FACC

7F30 sqr ;compute square root of FACC

7F33 negop ;negate FACC

7F36 fpwr ;raise ARG to the MEM power

7F39 fpwrt ;raise ARG to the FACC power

7F3C exp ;compute EXP of FACC

7F3F cos ;compute COS of FACC

7F42 sin ;compute SIN of FACC

7F45 tan ;compute TAN of FACC

7F48 atn ;compute ATN of FACC

7F4B round ;round FACC

7F4E abs ;absolute value of FACC

7F51 sign ;test sign of FACC

7F54 fcomp ;compare FACC with MEM

7F57 rnd_0 ;generate random floating point number

 Movement

7F5A conupk ;move RAM MEM to ARG

7F5D romupk ;move ROM MEM to ARG

7F60 movfrm :move RAM MEM to FACC

7F63 movfm :move ROM MEM to FACC

7F66 movmf :move FACC to MEM

7F69 movfa ;move ARG to FACC

7F6C movaf ;move FACC to ARG

7F6F run

7F72 runc

7F75 clear

7F78 new

7F7B link_program

7F7E crunch

7F81 FindLine

7F84 newstt

7F87 eval

7F8A frmevl

7F8D run_a_program

7F90 setexc

7F93 linget

7F96 garba2

7F99 execute_a_line

7F9C chrget

7F9F chrgot

7FA2 chkcom

7FAS frmnum

7FA8 getadr

7FAB getnum

7FAE getbyt

7FB1 plsv

 Graphic Jump Table

8000 init ;Graphics BASIC init (same as command=0)

8002 parse ;Graphics BASIC command parser

8003 start ;0 commands

8006 screendef ;1

8008 screenopen ;2

800A screenclose ;3

800C screenclear ;4

800E screen ;5

8010 setpen ;6

8012 setpalette ;7

8014 setdmode ;8

8016 setdpat ;9

8018 line ;10

801A box ;11

801C circle ;12

801E polygon ;13

8020 ellipse ;14

8022 viewpclr ;15

8024 copy ;16

8026 cut ;17

8028 paste ;18

802A load ;19

802C char ;20

802E viewportdef ;21

3.4.4. C64DX SOFT VECTORS

[*** THE FOLLOWING VECTORS AND JUMP TABLES ARE NOT FINAL ***]

 BASIC indirect vectors

02F7 jmp USR ;USR vector (must be set by application)

02FC esc_fn_vec ;Escape Function vector

02FE graphic_vector ;Graphic Kernel vector

0300 ierror ;indirect error (output error in .x)

0302 imain ;indirect main (system direct loop)

0304 icrnch ;indirect crunch (tokenization routine)

0306 iqplop ;indirect list (char list)

0308 igone ;indirect gone (char dispatch)

030A ieval ;indirect eval (symbol evaluation)

030C iesclk ;escape token crunch

030E iescpr ;escape token list

0310 iescex ;escape token execute

 Kernel indirect vectors

02FA iAutoScroll ;AutoScroll used by BASIC, Monitor, Editor

0312 itime ;(unused)

0314 iirq ;IRQ

0316 ibrk ;BRK

0318 inmi ;NMI

031A iopen

031C iclose

031E ichkin

0320 ickout

0322 iclrch

0324 ibasin

0326 ibsout

0328 istop

032A igetin

032C iclall

032E exmon ;Monitor command indirect

0330 iload

0332 isave

 Editor indirect vectors to routines & tables

0334 ctlvec ;'contrl' characters

0336 shfvec ;'shiftd' characters

0338 escvec ;'escape' characters

033A keyvec ;post keyscan, pre-evaluation of keys

033C keychk ;post-evaluation, pre-buffering of keys

033E decode ;vectors to 6 keyboard matrix decode tables

 33E - Mode 1 --> normal keys

 340 - Mode 2 --> <SHIFT> keys

 342 - Mode 3 --> <C=> keys

 344 - Mode 4 --> <CONTROL> keys

 346 - Mode 5 --> <CAPS LOCK> keys

 348 - Mode 6 --> <ALT> keys

3.4.5. KERNEL DOCUMENTATION

The KERNEL is the ROM resident operating system of the Commodore 64DX

computer. All input, output, and memory management is controlled by

the KERNEL. The KERNEL JUMP TABLE provides a standardized interface to

many useful routines within the operating system. Application

programmers are encouraged to utilize the JUMP TABLEs to simplify

their operations and guarantee their functionality should hardware or,

software modifications to the system become necessary.

C64 STANDARD KERNEL CALLS

The following system calls comprise the set of standard C64 system

calls for the C64 class of machines, including the PLUS-4. Several of

the calls, however function somewhat differently or may require

slightly different setups. This was necessary to accommodate specific

features of the system, notably the 40/80 column windowing Editor and

banked memory facilities. As with all Kernel calls, the system

configuration (BANK $FF) must be in context at the time of the call.

C64DX KERNEL JUMP TABLE DESCRIPTIONS

1. $FF81 CINT ; initialize screen editor

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 .Y used

 Memory: init Editor RAM

 init Editor I/O

 Flags: none

 Example:

 SEI

 JSR $FF81 ; initialize screen editor

 CLI

CINT is the Editor's initialization routine. Editor indirect vectors

installed, programmable key definitions assigned, and the ASC/DIN key

scanned for NATIONAL keyboard/charset determination. CINT sets the VIC

bank, VIC nybble bank, enables the character ROM, resets SID volume,

and clears the screen. The only thing it does not do that pertains to

the Editor which is needed for IRQs (keyscan, VIC cursor blink, split

screen modes), key lines, screen background colors, etc. (see IOINIT).

Because CINT updates Editor indirect vectors that are used during IRQ

processing, you should disable IRQs prior to calling it. CINT utilizes

the status byte INIT STATUS as follows:

 $1104 bit 6 = 0 --> Full initialization.

 (Set INIT_STATUS bit 6)

 = 1 --> Partial initialization.

 (not keymatrix pointers)

 (not program key definitions)

2. $FF84 IOINIT ; init I/O devices

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 .Y used

 Memory: initialize I/O

 Flags: none

 Example:

 SEI

 JSR $FF84 ; initialize system I/O

 CLI

IOINIT is perhaps the major function of the Reset handler. It

initializes both CIA's (timers, keyboard serial port, user port), the

4510 port, the VIC chip, the UART and the DOS. It distinguishes a PAL

system from an NTSC one and sets PALCNT if PAL. The system IRQ source,

the VIC raster, is started (pending IRQs are cleared). IOINIT utilizes

the status byte INIT STATUS as follows:

 $1104 bit 7 = 0 --> Full initialization.

 (set INIT STATUS bit 7)

 = 1 --> Partial initialization.

You should be sure IRQs are disabled before calling IOINIT to avoid

interrupts while the various I/O devices are being initialized.

3. $FF87 RAMTAS ; init RAM and buffers

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 .Y used

 Memory: initializes RAM

 Flags: none

 Example:

 JSR $FF87 ; initialize system RAM

RAMTAS clears all base page RAM, allocates the sets pointers to the

top and bottom of system RAM and points the SYSTEM_VECTOR to BASIC

cold start. Lastly it sets a flag, DEJAVU, to indicate to other

routines that system RAM has been initialized and that the

SYSTEM_VECTOR is valid. It should be noted that the C64DX RAMTAS

routine does NOT in any way test RAM.

4. $FF8A RESTOR ; init Kernel indirects

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 .Y used

 Memory: kernel indirects restored

 Flags: none

 Example:

 SEI

 JSR $FF8A ; restore kernel indirects

 CLI

RESTOR restores the default values of all the Kernel indirect vectors

from the Kernel ROM list. It does NOT affect any other vectors, such

as those used by the Editor (see CINT) and BASIC. Because it is

possible for an interrupt (IRQ or NMI) to occur during the updating of

the interrupt indirect vectors, you should disable interrupts prior to

calling RESTOR. See also the VECTOR call.

5. $FF8D VECTOR ; init or copy indirects

 Preparation:

 Registers: .X = adr (low) of user list

 .Y = adr (high) of user list

 Memory: system map

 Flags: .C = 0 --> load Kernel vectors

 .C = 1 --> copy Kernel vectors

 Calls: none

 Results:

 Registers: .A used

 .Y used

 Memory: as per call

 Flags: none

 Example:

 LDX #save_lo

 LDY #save_hi

 SEC

 JSR $FF87 ; copy indirects to 'save'

VECTOR reads or writes the Kernel RAM indirect vectors. Calling VECTOR

with the carry status set stores the current contents of the indirect

vectors to the RAM address passed in the .X and .Y registers (to the

current RAM bank). Calling VECTOR with the carry status clear updates

the Kernel indirect vectors from the user list passed in the .X and .Y

registers (from the current RAM bank). Interrupts (IRQ and NMI) should

be disabled when updating the indirects. See also the RESTOR call.

6. $FF90 SETMSG ; kernel messages on/off

 Preparation:

 Registers: .A = message control

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: none

 Memory: MSGFLG updated

 Flags: none

 Example:

 LDA #0

 JSR $FF90 ; turn OFF all Kernel messages

SETMSG updates the Kernel message flag byte MSGFLG which determines

whether system error and/or control messages will be displayed. BASIC

normally disables error messages always and disables control messages

in 'run' mode. Note that the Kernel error messages are not the verbose

ones printed by BASIC, but simply the 'I/O ERROR #' message that you

see when in the Monitor, for example. Examples of Kernel control

messages are 'LOADING' and 'FOUND'. The MSGFLG control bits are:

 MSGFLG bit 7 = 1 --> enable CONTROL messages

 bit 6 = 1 --> enable ERROR messages

7. $FF93 SECND ; serial: send SA after LISTN

 Preparation:

 Registers: .A = SA (secondary address)

 Memory: system map

 Flags: none

 Calls: LISTN

 Results:

 Registers: .A used

 Memory: STATUS ($90)

 Flags: none

 Example:

 LDA #8

 JSR $FFB1 ; LISTN device 8

 LDA #15

 JSR $FF93 ; pass it SA #15

SECND is a low-level serial routine used to send a secondary address

(SA) to a LISTeNing device (see LISTN Kernel call). An SA is usually

used to provide setup information to a device before the actual data

I/O operation begins. Attention is released after a call to SECND.

SECND is not used to send an SA to a TALKing device (see TKSA). (Most

applications should use the higher level I/O routines: see OPEN and

CKOUT).

8. $FF96 TKSA ; serial: send SA after TALK

 Preparation:

 Registers: .A = SA (secondary address)

 Memory: system map

 Flags: none

 Calls: TALK

 Results:

 Registers: .A used

 Memory: STATUS ($90)

 Flags: none

 Example:

 LDA #8

 JSR $FFB4 ; TALK device 8

 LDA #15

 JSR $FF93 ; pass it SA #15

TKSA is a low-level serial routine used to send a secondary address

(SA) to a device commanded to TALK (see TALK Kernel call). An SA is

usually used to provide setup information to a device before the

actual data I/O operation begins. (Most applications should use the

higher level I/O routines: see OPEN and CHKIN).

9. $FF99 MEMTOP ; set/read top of system RAM

 Preparation:

 Registers: .X = lsb of MEMSIZ

 .Y = msb of MEMSIZ

 Memory: system map

 Flags: .C = 0 --> set top of memory

 .C = 1 --> read top of memory

 Calls: none

 Results:

 Registers: .X = lsb of MEMSIZ

 .Y = msb of MEMSIZ

 Memory: MEMSIZ

 Flags: none

 Example:

 SEC

 JSR $FF99 ; get top of user RAM

 DEY

 CLC

 JSR $FF99 ; lower it 1 block

MEMTOP is used to read or set the top of system RAM, pointed to by

MEMSIZ. This call is included in the C64DX for completeness, but

neither the Kernel nor BASIC utilize MEMTOP as it has little meaning

in the banked memory environment of the computer (even the RS-232

buffers are permanently allocated). None-the-less, set the carry

status to load MEMSIZ into .X and .Y, and clear it to update the

pointer from .X and .Y. Note that MEMSIZ references only system RAM.

The Kernel initially sets MEMSIZ to $FF00.

10. $FF9C MEMBOT ; set/read bottom of system RAM

 Preparation:

 Registers: .X = lsb of MEMSTR

 .Y = msb of MEMSTR

 Memory: system map

 Flags: .C = 0 --> set bot of memory

 .C = 1 --> read bot of memory

 Calls: none

 Results:

 Registers: .X = lsb of MEMSTR

 .Y = msb of MEMSTR

 Memory: MEMSTR

 Flags: none

 Example:

 SEC

 JSR $FF9C ; get bottom of user RAM_0

 INY

 CLC

 JSR $FF9C ; raise it 1 block

MEMBOT is used to read or set the bottom of system RAM, pointed to by

MEMSTR. This call is included in the C64DX for completeness, but

neither the Kernel nor BASIC utilize MEMBOT as it has little meaning

in the banked memory environment of the C64DX. None-the-less, set the

carry status to load MEMSTR into .X and .Y, and clear it to update the

pointer from .X and .Y. Note that MEMSTR references only system RAM.

The Kernel initially sets MEMSTR to $2000 (BASIC text starts here).

11. $FF9F KEY ; scan keyboard

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: none

 Memory: keyboard buffer

 keyboard flags

 Flags: none

 Example:

 JSR $FF9F ; scan the keyboard

KEY is an Editor routine which scans the entire keyboard. It

distinguishes between shifted and unshifted keys, control keys, and

programmable keys, setting keyboard status bytes and managing the

keyboard buffer. After decoding the key, KEY will manage such features

as toggling cases, pauses or delays, and key repeats. It is normally

called by the operating system during the 60Hz IRQ processing. Upon

conclusion, KEY leaves the keyboard hardware driving the key-line on

which the STOP key is located.

There are two indirect RAM jumps encountered during a keyscan: KEYVEC

($33A) and KEYCHK ($33C). KEYVEC (alias KEYLOG) is taken whenever a

key depression is discovered, before the key in .A has been decoded.

KEYCHK is taken after the key has been decoded, just before putting it

into the key buffer. KEYCHK carries the ASCII character in .A, the

keycode in .Y, and the shift-key status in .X.

The keyboard decode matrices are addressed via indirect RAM vectors as

well, located at DECODE.

12. $FFA2 SETTMO ; (reserved)

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: none

 Memory: TIMOUT

 Flags: none

 Example:

 LDA #value

 JSR $FFA2 ; update TIMOUT byte

SETTMO is unused in the C64DX and is included for compatibility and

completeness. It is used in the C64 by the IEEE communication

cartridge to disable I/O timeouts.

13. $FFA5 ACPTR ; serial: byte input.

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: TALK

 TKSA (if necessary)

 Results:

 Registers: .A = data byte

 Memory: STATUS ($90)

 Flags: none

 Example:

 JSR $FFA5 ; input a byte from serial bus

 STA data

ACPTR is a low-level serial I/O utility to accept a single byte from

the current serial bus TALKer using full handshaking. To prepare for

this routine a device must first have been established as a TALKer

(see TALK) and passed a secondary address if necessary (see TKSA). The

byte is returned in .A. (Most applications should use the higher level

I/O routines: see BASIN and GETIN).

14. $FFA8 CIOUT ; serial: byte output

 Preparation:

 Registers: .A = data byte

 Memory: system map

 Flags: none

 Calls: LISTN

 SECND (if necessary)

 Results:

 Registers: .A used

 Memory: STATUS ($90)

 Flags: none

 Example:

 LDA data

 JSR $FFA8 ; send a byte via serial bus

CIOUT is a low-level serial I/O utility to transmit a single byte to

the current serial bus LISTNer using full handshaking. To prepare for

this routine a device must first have been established as a LISTNer

(see LISTN) and passed a secondary address if necessary (see SECND).

The byte is passed in .A. Serial output data is buffered by one

character, with the last character being transmitted with EOI after a

call to UNLSN. (Most applications should use the higher level I/O

routines; see BSOUT).

15. $FFAB UNTLK ; serial: send untalk

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 Memory: STATUS ($90)

 Flags: none

 Example:

 JSR $FFAB ; UNTALK serial device

UNTLK is a low-level Kernel serial bus routine that sends an UNTALK

command to all serial bus devices. It commands all TALKing devices to

stop sending data. (Most applications should use the higher level I/O

routines; see CLRCH).

16. $FFAE UNLSN ; serial: send unlisten

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 Memory: STATUS ($90)

 Flags: none

 Example:

 JSR $FFAE ; UNLISTEN serial device

UNLSN is a low-level Kernel serial bus routine that sends an UNLISTEN

command to all serial bus devices. It commands all LISTENing devices

to stop reading data. (Most applications should use the higher level

I/O routines; see CLRCH).

17. $FFB1 LISTN ; serial: send listen command

 Preparation:

 Registers: .A = device (0-31)

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 Memory: STATUS ($90)

 Flags: none

 Example:

 JSR $FFB1 ; command device to LISTEN

LISTN is a low-level Kernel serial bus routine that sends an LISTEN

command to the serial bus device in .A. It commands the device to

start reading data. (Most applications should use the higher level I/O

routines; see CKOUT).

18. $FFB4 TALK ; serial: send talk command

 Preparation:

 Registers: .A = device (0-31)

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 Memory: STATUS ($90)

 Flags: none

 Example:

 JSR $FFB4 ; command device to TALK

TALK is a low-level Kernel serial bus routine that sends an TALK

command to the serial bus device in .A. It commands the device to

start sending data. (Most applications should use the higher level I/O

routines; see CHKIN).

19. $FFB7 READSS ; read I/O status byte

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A = STATUS ($90 or $A6)

 Memory: STATUS cleared if RS-232 ($A6)

 Flags: none

 Example:

 JSR $FFB7 ; STATUS for last I/O

READSS (alias READST) returns the status byte associated with the last

I/O operation (serial or RS-232) performed. Serial bus and newDOS

devices update STATUS ($90) and RS-232 I/O updates RSSTAT ($A6). Note

that, to simulate an 6551, RSSTAT is cleared after it is read via

READSS. The last I/O operation is determined by the contents of FA

($BA), thus applications which drive I/O devices using the lower-level

Kernel calls should not use READSS.

20. $FFBA SETLFS ; set channel LA, FA, SA

 Preparation:

 Registers: .A = LA (logical #)

 .X = FA (device #)

 .Y = SA (secondary adr)

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: none

 Memory: LA, FA, SA updated

 Example:

 see OPEN

SETLFS sets the logical file number (LA, $B8), device number (FA,

$BA), and secondary address (SA, $B9) for the higher-level Kernel I/O

routines. The LA must be unique among OPENed files and is used to

identify specific files for I/O operations. The device number range is

0 to 31 and is used to target I/O. The SA is a command to be sent to

the indicated device, usually to place it in a particular mode. If the

SA is not needed, the .Y register should pass $FF. SETLFS is often

used along with SETNAM and SETBNK calls prior to OPENs. See the Kernel

OPEN, LOAD, and SAVE calls for examples.

21. $FFBD SETNAM ; set filename pointers

 Preparation:

 Registers: .A = string length

 .X = string adr_low

 .Y = string adr_high

 Memory: system map

 Flags: none

 Calls: SETBNK

 Results:

 Registers: none

 Memory: FNLEN, FNADR updated

 Flags: none

 Example:

 see OPEN

SETNAM sets up the filename or command string for higher-level Kernel

I/O calls such as OPEN, LOAD, and SAVE. The string (filename or

command) length is passed in .A and updates FNLEN ($B7). The address

of the string is passed in .X (low) and Y (high). See the companion

call, SETBNK which specifies which RAM bank the string is found. If

there is no string, SETNAM should still be called and a null ($00)

length specified (the address does not matter). SETNAM is often used

along with SETBNK and SETLFS calls prior to OPENs. See the Kernel

OPEN, LOAD, and SAVE calls for examples.

22. $FFC0 OPEN ; open logical file

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: SETLFS, SETNAM, SETBNK

 Results:

 Registers: .A = error code (if any)

 .X used

 .Y used

 Memory: setup for I/O

 STATUS, RSSTAT updated

 Flags: .C = 1 --> error

 Example: OPEN 1,8,15,"I0"

 LDA #length ; fnlen

 LDX #<filename ; fnadr (command)

 LDY #>filename

 JSR $FFBD ; SETNAM

 LDX #0 ; fnbank (RAM_0)

 JSR $FF68 ; SETBNK

 LDA #1 ; la

 LDX #8 ; fa

 LDY #15 ; sa

 JSR $FFBA ; SETLFS

 JSR $FFC0 ; OPEN

 BCS error

 filename .BYTE 'I0'

 length = 2

OPEN prepares a logical file for I/O operations. It creates a unique

entry in the Kernel logical file tables LAT ($362), FAT ($36C), and

SAT ($376) using its index LDTND ($98) and data supplied by the user

via SETLFS. There can be up to ten logical files OPENed

simultaneously. OPEN performs device specific opening tasks for

serial, RS-232, keyboard & screen, devices, including clearing the

previous status and transmitting any given filename or command string

supplied by the user via SETNAM and SETBNK. The I/O status will be

updated appropriately and can be read via READSS.

The path to OPEN is through an indirect RAM vector at $31A.

Applications may therefore provide their own OPEN procedures or

supplement the system's by re-directing this vector to their own

routine.

23. $FFC3 CLOSE ; close logical file

 Preparation:

 Registers: .A = LA (logical #)

 Memory: system map

 Flags: .C (see text below)

 Calls: none

 Results:

 Registers: .A = error code (if any)

 .X used

 .Y used

 Memory: logical tables updated

 STATUS, RSSTAT updated

 Flags: .C = 1 --> error

 Example:

 LDA #1 ; la

 JSR $FFC3 ; CLOSE

 BCS error

CLOSE removes the logical file (LA) passed in .A from the logical file

tables and performs device specific closing tasks. Keyboard, screen,

and any unOPENed files pass through. RS-232 devices are not closed

until all buffered data has been transmitted. Serial files are closed

by transmitting a 'close' command (if an SA was given when it was

opened), sending any, buffered character, and UNLiSTeNing the bus.

There is a special provision incorporated into the CLOSE routine of

systems featuring BASIC DOS command. If the following conditions are

all TRUE, a full CLOSE is NOT performed: the table entry is removed

but a 'close' command is NOT transmitted to the device. This allows

the disk command channel to be properly OPENed and CLOSEd without the

disk operating system closing ALL files on its end:

 .C = 1 --> indicates special CLOSE

 FA >=8 --> device is a disk

 SA =15 --> command channel

The path to CLOSE is through an indirect RAM vector at $31C.

Applications may therefore provide their own CLOSE procedures or

supplement the system's by re-directing this vector to their own

routine.

24. $FFC6 CHKIN ; set input channel

 Preparation:

 Registers: .X = LA (logical #)

 Memory: system map

 Flags: none

 Calls: OPEN

 Results:

 Registers: .A = error code (if any)

 .X used

 .Y used

 Memory: LA, FA, SA, DFLTN

 STATUS, RSSTAT updated

 Flags: .C = 1 --> error

 Example:

 LDX #1 ; la

 JSR $FFC6 ; CHKIN

 BCS error

CHKIN establishes an input channel to the device associated with the

logical address (LA) passed in .X, in preparation for a call to BASIN

or GETIN. The Kernel variable DFLTN ($99) is updated to indicate the

current input device and the variables LA, FA, and SA are updated with

the file's parameters from its entry in the logical file tables (put

there by OPEN). CHKIN performs certain device specific tasks: screen

and keyboard channels pass through, and serial channels are sent a

TALK command and the SA transmitted (if necessary). Call CLRCH to

restore normal I/O channels.

CHKIN is required for all input except the keyboard. If keyboard input

is desired and no other input channel is established, you do not need

to call CHKIN or OPEN. The keyboard is the default input device for

BASIN and GETIN.

The path to CHKIN is through an indirect RAM vector at $31E.

Applications may therefore provide their own CHKIN procedures or

supplement the system's by re-directing this vector to their own

routine.

25. $FFC9 CKOUT ; set output channel

 Preparation:

 Registers: .X = LA (logical #)

 Memory: system map

 Flags: none

 Calls: OPEN

 Results:

 Registers: .A = error code (if any)

 .X used

 .Y used

 Memory: LA, FA, SA, DFLTO

 STATUS, RSSTAT updated

 Flags: .C = 1 --> error

 Example:

 LDX #1 ; la

 JSR $FFC9 ; CKOUT

 BCS error

CKOUT establishes an output channel to the device associated with the

logical address (LA) passed in .X, in preparation for a call to BSOUT.

The Kernel variable DFLTO ($9A) is updated to indicate the current

output device and the variables LA, FA, and SA are updated with the

file's parameters from its entry in the logical file tables (put there

by OPEN). CKOUT performs certain device specific tasks: keyboard

channels are illegal, screen channels pass through, and serial

channels are sent a LISTN command and the SA transmitted (if

necessary). Call CLRCH to restore normal I/O channels.

CKOUT is required for all output except the screen. If screen output

is desired and no other output channel is established, you do not need

to call CKOUT or OPEN. The screen is the default output device for

BSOUT.

The path to CKOUT is through an indirect RAM vector at $320.

Applications may therefore provide their own CKOUT procedures or

supplement the system's by re-directing this vector to their own

routine.

26. $FFCC CLRCH ; restore default channels

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 Memory: DFLTI, DFLTO updated

 Flags: none

 Example:

 JSR $FFCC ; restore default I/O

CLRCH (alias CLRCHN) is used to clear all open channels and restore

the system default I/O channels after other channels have been

established via CHKIN and/or CHKOUT. The keyboard is the default input

device and the screen is the default output device. If the input

channel was to a serial device, CLRCH first UNTLKs it. If the output

channel was to a serial device, it is UNLiSteNed first.

The path to CLRCH is through an indirect RAM vector at $322.

Applications may therefore provide their own CLRCH procedures or

supplement the system's by re-directing this vector to their own

routine.

27. $FFCF BASIN ; input from channel

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: CHKIN (if necessary)

 Results:

 Registers: .A = character (or error code)

 Memory: STATUS, RSSTAT updated

 Flags: .C = 1 if error

 Example:

 LDY #0 ; index

 more JSR $FFCF ; input a character

 STA data,Y ; buffer it

 INY

 CMP #$0D ; carriage return?

 BNE more

BASIN (alias CHRIN) reads a character from the current input device

(DFLTN, $99) and returns it in .A. Input from devices other than the

keyboard (the default input device) must be OPENed and CHKINed. The

character is read from the input buffer associated with the current

input channel:

1. RS-232 data is returned a character at a time from the RS-232 input

 buffer, waiting until a character is received if necessary. If

 RSSTAT is bad from a prior operation, input is skipped and null

 input (carriage return) is substituted.

2. Serial data is returned a character at a time directly from the

 serial bus, waiting until a character is sent if necessary. If

 STATUS ($90) is bad from a prior operation, input is skipped and

 null input (carriage return) is substituted.

3. Screen data is read from screen RAM starting at the current cursor

 position and ending with a faked carriage return at the end of the

 logical screen line.

4. Keyboard data is input by turning on the cursor reading characters

 from the keyboard buffer and echoing them on the screen until a

 carriage return is encountered. Characters are then returned one at

 a time from the screen until all characters input have been passed,

 including the carriage return. Any calls after the eol will start

 the process over again.

The path to BASIN is through an indirect RAM vector at $324.

Applications may therefore provide their own BASIN procedures or

supplement the system's by re-directing this vector to their own

routine.

28. $FFD2 BSOUT ; output to channel

 Preparation:

 Registers: .A = character

 Memory: system map

 Flags: none

 Calls: CKOUT (if necessary)

 Results:

 Registers: .A = error code (if any)

 Memory: STATUS, RSSTAT updated

 Flags: .C = 1 if error

 Example:

 LDA #character

 JSR $FFD2 ; output a character

BSOUT (alias CHROUT) writes the character in .A to the current output

device (DFLTO, $9A). Output to devices other than the screen (the

default output device) must be OPENed and CKOUTed. The character is

written to the output buffer associated with the current output

channel:

1. RS-232 data is put a character at a time into the RS-232 output

 buffer, waiting until there is room if necessary.

2. Serial data is passed to CIOUT which buffers one character and

 sends the previous character.

3. Screen data is put into screen RAM at the current cursor position.

4. Keyboard output is illegal.

The path to BSOUT is through an indirect RAM vector at $326.

Applications may therefore provide their own BSOUT procedures or

supplement the system's by re-directing this vector to their own

routine.

29. $FFD5 LOAD ; load from file

 Preparation:

 Registers: .A = 0 --> LOAD

 .A > 0 --> VERIFY

 .X = load adr_lo (if SA=0)

 .Y = load adr_hi (if SA=0)

 Memory: system map

 Flags: none

 Calls: SETLFS, SETNAM, SETBNK

 Results:

 Registers: .A = error code (if any)

 .X = ending adr_lo

 .Y = ending adr_hi

 Memory: per command

 STATUS updated

 Flags: .C = 1 --> error

 Example: LOAD "program",8,1

 LDA #length ; fnlen

 LDX #<filename ; fnadr

 LDY #>filename

 JSR $FFBD ; SETNAM

 LDA #0 ; load/verify bank (RAM_0)

 LDX #0 ; fnbank (RAM_0)

 JSR $FF68 ; SETBNK

 LDA #0 ; la (not used)

 LDX #8 ; fa

 LDY #$FF ; sa (SA>0 normal load)

 JSR $FFBA ; SETLFS

 LDA #0 ; load, not verify

 LDX #<load_adr ; (used only if SA=0)

 LDY #>load_adr ; (used only if SA=0)

 JSR $FFD5 ; LOAD

 BCS error

 STX end_lo

 STY end_hi

 filename .BYTE 'program'

 length = 7

This routine LOADs data from an input device into memory. It can also

be used to VERIFY that data in memory matches that in a file. LOAD

performs device specific tasks for serial LOADs. You cannot LOAD from

RS-232 devices, the screen, or the keyboard. While LOAD performs all

the tasks of an OPEN, it does NOT create any logical files as an OPEN

does. Also note that LOAD cannot 'wrap' memory banks. As with any I/O,

the I/O status is updated appropriately and can be read via READSS.

LOAD has two options that the user must select:

1. LOAD vs. VERIFY: the contents of .A passed at the call to LOAD

 determines which mode is in effect. If .A is zero, a LOAD operation

 will be performed and memory will be overwritten. If .A is

 non-zero, a VERIFY operation will be performed and the result

 passed via the error mechanism.

2. LOAD ADDRESS: the secondary address (SA) setup by the call to

 SETLFS determines where the LOAD starting address comes from. If

 the SA is zero, the user wants the address in .X and .Y at the time

 of the call to be used. If the SA is non-zero, the LOAD starting

 address is read from the file header itself and the file loaded to

 the same place from which it was SAVEd.

The serial LOAD routine automatically attempts to access a newDOS

drive, then attempts to BURST load a file, and resorts to the normal

load mechanism (but still using the FAST serial routines) if the BURST

handshake is not returned.

The path to LOAD is through an indirect RAM vector at $330.

Applications may therefore provide their own LOAD procedures or

supplement the system's by re-directing this vector to their own

routine.

30. $FFD8 SAVE ; save to file

 Preparation:

 Registers: .A = pointer to start adr

 .X = end_adr_lo

 .Y = end_adr_hi

 Memory: system map

 Flags: none

 Calls: SETLFS, SETNAM, SETBNK

 Results:

 Registers: .A = error code (if any)

 .X = used

 .Y = used

 Memory: STATUS updated

 Flags: .C = 1 --> error

 Example: SAVE "program",8

 LDA #length ; fnlen

 LDX #<filename ; fnadr

 LDY #>filename

 JSR $FFBD ; SETNAM

 LDA #0 ; save from bank (RAM_0)

 LDX #0 ; fnbank (RAM_0)

 JSR $FF68 ; SETBNK

 LDA #0 ; la (not used)

 LDX #8 ; fa

 LDY #0 ; sa (cassette only)

 JSR $FFBA ; SETLFS

 LDA #start ; pointer to start address

 LDX end ; ending address lo

 LDY end+1 ; ending address hi

 JSR $FFD8 ; SAVE

 BCS error

 filename .BYTE 'program'

 length = 7

 start .WORD address1 ; page_0

 end .WORD address2

This routine SAVEs data from memory to an output device. SAVE performs

device specific tasks for serial SAVEs. You cannot SAVE from RS-232

devices, the screen, or the keyboard. While SAVE performs all the

tasks of an OPEN, it does NOT create any logical files as an OPEN

does. The starting address of the area to be SAVEd must be placed in a

base-page vector and the address of this vector passed to SAVE in .A

at the time of the call. The address of the last byte to be SAVEd PLUS

ONE is passed in .X and .Y at the same time.

SAVE first attempts to access a newDOS drive. There is no BURST save:

the normal FAST serial routines are used. As with any I/O, the I/O

status will be updated appropriately and can be read via READSS.

The path to SAVE is through an indirect RAM vector at $332.

Applications may therefore provide their own SAVE procedures or

supplement the system's by re-directing this vector to their own

routine.

31. $FFDB SETTIM ; set internal clock

 Preparation:

 Registers: .A = hours

 .X = minutes

 .Y = seconds

 .Z = tenths

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: none

 Memory: TOD at CIA $DC00 updated

 Flags: none

 Example:

 LDA #0 ; reset clock

 TAX

 TAY

 TAZ

 JSR $FFDB ; SETTIM

SETTIM sets the system CIA 24-hour TOD clock, which counts tenths of a

second and automatically wraps at the 24-hour point.

32. $FFDE RDTIM ; read internal clock

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A = hours

 .X = minutes

 .Y = seconds

 .Z = tenths

 Memory: none

 Flags: none

 Example:

 JSR $FFDE ; RDTIM

RDTIM reads the system CIA 24-hour TOD clock, which counts tenths of a

second. The timer is automatically wrapped at the 24-hour point.

33. $FFE1 STOP ; scan stop key

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A = last keyboard row

 .X = used (if STOP key)

 Memory: none

 Flags: status valid

 Example:

 JSR $FFE1 ; scan STOP key

 BEQ stop ; branch if down

STOP checks a Kernel variable STKEY ($91), which is updated by UDTIM

during normal IRQ processing and contains the last scan of keyboard

column C7. The STOP key is bit-7, which will be zero if the key is

down. If it is, default I/O channels are restored via CLRCH and the

keyboard queue is flushed by resetting NDX ($D0). The keys on keyboard

line C7 are:

 bit: 7 6 5 4 3 2 1 0

 key: STOP Q C= SPACE 2 CTRL <-- 1

The path to STOP is through an indirect RAM vector at $328.

Applications may therefore provide their own STOP procedures or

supplement the system's by re-directing this vector to their own

routine.

34. $FFE4 GETIN ; read buffered data

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: CHKIN (if necessary)

 Results:

 Registers: .A = character (or error code)

 .X used

 .Y used

 Memory: STATUS, RSSTAT updated

 Flags: .C = 1 if error

 Example:

 wait JSR $FFE4 ; get any key

 BEQ wait

 STA character

GETIN reads a character from the current input device (DFLTN $99)

buffer and returns it in .A. Input from devices other than the

keyboard (the default input device) must be OPENed and CHKINed. The

character is read from the input buffer associated with the current

input channel:

1. Keyboard input: a character is removed from the keyboard buffer and

 passed in .A. If the buffer is empty, a null ($00) is returned.

2. RS-232 input: a character is removed from the RS-232 input buffer

 and passed in .A. If the buffer is empty, a null ($00) is returned

 (use READSS to check validity).

3. Serial input: GETIN automatically jumps to BASIN. See BASIN serial

 I/O.

4. Screen input: GETIN automatically jumps to BASIN. See BASIN serial

 I/O.

The path to GETIN is through an indirect RAM vector at $32A.

Applications may therefore provide their own GETIN procedures or

supplement the system's by re-directing this vector to their own

routine.

35. $FFE7 CLALL ; close all files and channels

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 Memory: LDTND, DFLTN, DFLTO updated

 Flags: none

 Example:

 JSR $FFE7 ; close files

CLALL deletes all logical file table entries by resetting the table

index, LDTND ($98). It clears current serials channels (if any) and

restores the default I/O channels via CLRCH.

The path to CLALL is through an indirect RAM vector at $32C.

Applications may therefore provide their own CLALL procedures or

supplement the system's by re-directing this vector to their own

routine.

36. $FFEA ScanStopKey (was UDTIM, which has no purpose on C64DX)

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 Memory: TIME, TIMER, STKEY updated

 Flags: none

 Example:

 JSR $FFEA ; ScanStopKey

Scans key line C7, on which the STOP key lies, and stores the result

in STKEY ($91). The Kernel routine STOP utilizes this variable.

37. $FFED SCRORG ; get current screen window size

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A = screen width

 .X = window width

 .Y = window height

 Memory: none

 Flags: none

 Example:

 JSR $FFED ; SCRORG

SCRORG returns active window's size (maximum row & column #) & origin.

entry: nothing required.

exit: .C = max. screen width (0=80, 1=40) default = 0

 .X = max. column number (# columns - 1) default = 79

 .Y = max. line number (# lines minus 1) default = 24

 .A = window address (home position), low default = $0800

 .Z = window address, high

38. $FFF0 PLOT ; read/set cursor position

 Preparation:

 Registers: .X = cursor line

 .Y = cursor column

 Memory: system map

 Flags: .C = 0 --> set cursor position

 .C = 1 --> get cursor position

 Calls: none

 Results:

 Registers: .X = cursor line

 .Y = cursor column

 Memory: TBLX, PNTR updated

 Flags: .C = 1 --> error

PLOT Reads or sets the cursor position within current window.

Entry: .C = 1 Returns the cursor position (.Y=column, .X=line)

 relative to the current window origin (NOT screen

 origin).

 .C = 0 Sets the cursor position (.Y=column, .X=line)

 relative to the current window origin (NOT screen

 origin).

Exit: When reading position, .X=line, .Y=column, .C=1 if wrapped

 line.

 When setting new position, .X=line, .Y=column, and

 .C = 0 Normal exit. The cursor has been moved to the position

 contained in .X & .Y relative to window origin (see

 SCRORG).

 .C = 1 Error exit. The requested position was outside the

 current window (see SCRORG). The cursor has not been

 moved.

When called with the carry status set, PLOT returns the current cursor

position relative to the current window origin (NOT screen origin).

When called with the carry status clear, PLOT attempt to move the

cursor to the indicated line and column relative to the current window

origin (NOT screen origin). PLOT will return a clear carry status if

the cursor was moved, and a set carry status if the requested position

was outside the current window (NO CHANGE has been made).

Editor variables that are useful:

 SCBOT - $E4 --> window bottom

 SCTOP - $E5 --> window top

 SCLF - $E6 --> window left side

 SCRT - $E7 --> window right side

 TBLX - $EC --> cursor line

 PNTR - $ED --> cursor column

 LINES - $EE --> maximum screen height

 COLUMNS $EF --> maximum screen width

39. $FFF3 IOBASE ; read base address of I/O block

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .X = lsb of I/O block

 .Y = msb of I/O block

 Memory: none

 Flags: none

 Example:

 JSR $FFF3 ; find the I/O block

IOBASE is unused in the C64DX and is included for compatibility and

completeness. It returns the address of the I/O block in .X and .Y.

NEW C64DX KERNEL CALLS

The following system calls comprise a set of extensions to the

standard CBM jump table. They are specifically for the C64DX machine

and as such should not be considered as permanent additions to the

standard jump table. With the exception of C64MODE they are all true

subroutines and will terminate via RTSs. As with all Kernel calls, the

system configuration (BANK $FF) must be in context at the time of the

call.

1. $FF4D SPIN_SPOUT ;setup fast serial ports for I/O

 Preparation:

 Registers: none

 Memory: system map

 Flags: .C = 0 --> select SPINP

 .C = 1 --> select SPOUT

 Calls: none

 Results:

 Registers: .A used

 Memory: CIA_1, FSDIR register

 Flags: none

 Example:

 CLC

 JSR $FF4D ;setup for fast serial input

The fast serial protocol utilizes CIA_1 (6526 at $DC00) and a special

driver circuit controlled in part by the FSDIR register. SPINP and

SPOUT are routines used by the system to set up the CIA and fast

serial driver circuit for input or output. SPINP sets up CRA (CIA_1

register 14) and clears the FSDIR bit for input. SPOUT sets up CRA,

ICR (CIA_1 register 13), timer A (CIA_l registers 4 & 5), and sets the

FSDIR bit for output. Note the state of the TOD_IN bit of CRA is

always preserved. These routines are required only by applications

driving the fast serial bus themselves from the lowest level.

2. $FF50 CLOSE_ALL ;close all files on a device

 Preparation:

 Registers: .A --> device # (FA: 0-31)

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 .Y used

 Memory: none

 Flags: none

 Example:

 LDA #$08

 JSR $FF50 ; close all files on device 8

The FAT is searched for the given FA. A proper CLOSE is

performed for all matches. If one of the CLOSEd channels is the

current I/O channel then the default channel is restored.

This call is utilized, for example, by the BASIC command DCLOSE.

3. $FF53 C64MODE ;reconfigure system as a C64

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: none

 Memory: none

 Flags: none

 Example:

 JMP $FF53 ;switch to C64 mode

THERE IS NO RETURN FROM THIS ROUTINE. The system downloads code to RAM

which reMAPs the system to put the C64 ROM in context, resets all

VIC-III modes, and jumps to the C64 start routine.

Return to C65 mode is by resetting the machine, although a program

could do it very easily. A vector on the C64 side is provided to

restart C64DX mode.

4. $FF56 MonitorCall ;enter Monitor mode

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: none

 Memory: none

 Flags: none

Turns off BASIC receipt of IRQ, maps BASIC out, maps the Monitor in,

and calls it.

When the Monitor is exited, the system is restored, BASIC mapped in,

and the system_vector taken (usually points to BASIC warm start

entry).

5. $FF59 BOOT_SYS ;boot an alternate OS from disk

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: undefined

 Memory: undefined

 Flags: undefined

Boot an alternate system. Reads the "home" sector of any diskette

(physical track 0 sector 1, 512 bytes) into memory at $00400, turns

off BASIC, and JMPs to it. Nothing done if disk not present. JMP not

made if first byte is not $4C.

It forces the "system" memory map, not user environment.

No support for C128-style BOOT sector. Not related to BASIC 10.0 BOOT

command, which RUNs a BASIC program called "AUTOBOOT.C65*" if found.

6. $FF5C PHOENIX ;???? C64DX diagnostics ????

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: undefined

 Memory: undefined

 Flags: none

 Example:

 JSR $FF5C ;PHOENIX

Not same thing as C128 Phoenix routine. In the C65 development system,

this routine is called after BASIC inits and performs some system

diagnostics, displaying results on the screen.

7. $FF5F LKUPLA ;search tables for given la

8. $FF62 LKUPSA ;search tables for given sa

 Preparation:

 Registers: .A = LA (logical file number)

 if LKUPLA

 .Y = SA (secondary address)

 if LKUPSA

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A = LA (only if found)

 .X = FA (only if found)

 .Y = SA (only if found)

 Memory: none

 Flags: .C = 0 if found

 .C = 1 if not found

 Example:

 LDY #$60 ;find an available SA

 again INY

 CPY #$6F

 BCS too_many ;too many files open

 JSR $FF62 ;LKUPSA

 BCC again ;get another if in use

LKUPLA and LKUPSA are Kernel routines used primarily by BASIC DOS

commands to work around a user's open disk channels. The Kernel

requires unique logical device numbers (LAs) and the disk requires

unique secondary addresses (SAs), therefore BASIC must find

alternative unused values whenever it needs to establish a disk

channel.

9. $FF65 SWAPPER ;switch between 40 & 80 column modes

 Preparation:

 Registers: none

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 .Y used

 Memory: screen cleared

 Flags: none

 Example:

 LDA $D7 ;check display mode

 BMI if_80 ;branch if 80 column

 JSR $FF5F ;switch from 40 to 80

MODE, location $D7, is toggled by SWAPPER to indicate the current

display mode: $80 = 80-column, $00 = 40-column. Because they are both

VIC screens, changing them requires clearing the screens since they

share the same memory location.

10. $FF68 PFKEY ;program a function key

 Preparation:

 Registers: .A = pointer to string adr

 (lo/hi/bank)

 .Y = string length

 .X = key number (1-16)

 Memory: system map

 Flags: none

 Calls: none

 Results:

 Registers: .A used

 .X used

 .Y used

 Memory: PKYBUF, PKYDEF tables updated

 Flags: .C = 0 if successful

 .C = 1 if no room

 Example:

 LDA #$FA ;pointer to string address

 LDY #6 ;length

 LDX #15 ;key # ('HELP' key)

 JSR $FF68 ;install new key def'n

 BCS no_room

 >000FA 00 13 00 ;ptr to $1300 bank 0

 >01300 53 54 52 49 4E 47 ;'string'

PFKEY (alias KEYSET) is an Editor utility to replace a function key

string with a user's string. Keys 1-14 are F1-F14, 15 is the HELP key,

and 16 is the <shift>RUN string. The example above replaces the

'help<cr>' string assigned at system initialization to the HELP key

with the string 'string'. Both the key length table, PKYBUF

($1000-$100F), and the definition area, PKYDEF ($1010-$10FF) are

compressed and updated. The maximum length of all 16 strings is 240

characters. No change is made if there is insufficient room for a new

definition.

11. $FF6B SETBNK ;set bank for I/O operations

 ;and filename

 Preparation:

 Registers: .A = BA, memory bank (0-FF)

 .X = FNBANK, filename bank

 Memory: system map

 Flags: none

 Calls: SETNAM

 Results:

 Registers: none

 Memory: BA, FNBANK updated

 Flags: none

 Example:

 see OPEN

SETBNK is a prerequisite for any memory I/O operations and must be

used along with SETLFS and SETNAM prior to OPENing files, etc. BA

($C6) sets the current 64KB memory bank for LOAD/SAVE/ VERIFY

operations. FNBANK ($C7) indicates the bank in which the filename

string is found. The Kernel routine SETBNK is often used along with

SETNAM and SETLFS calls prior to OPENs. See the Kernel OPEN, LOAD, and

SAVE calls for examples.

12. $FF6E JSRFAR ;gosub in another bank

13. $FF71 JMPFAR ;goto another bank

 Preparation:

 Registers: none

 Memory: system map, also:

 $02 --> bank (0-FF)

 $03 --> PC_high

 $04 --> PC_low

 $05 --> .S (status)

 $06 --> .A

 $07 --> .X

 $08 --> .Y

 $09 --> .Z

 Flags: none

 Calls: none

 Results:

 Registers: none

 Memory: as per call, also:

 $05 --> .S (status)

 $06 --> .A

 $07 --> .X

 $08 --> .Y

 $09 --> .Z

 Flags: none

The two routines, JSRFAR and JMPFAR, enable code executing in the

system bank of memory to call (or JMP to) a routine in any other bank.

In the case of JSRFAR, the called routine must restore the system map

before executing a return.

JSRFAR calls JMPFAR. Both are RAM routines, located at $39C and $3B1

respectively.

The user should take necessary precautions when calling a non-system

bank that interrupts (IRQs & NMIs) will be handled properly (or

disabled beforehand).

14. $FF74 LDA_FAR ;LDA (.X),Y from bank .Z

 Preparation:

 Registers: .X = pointer to base page pointer

 .Y = index

 .Z = bank (0-FF)

 Memory: setup indirect vector

 Flags: none

 Calls: none

 Results:

 Registers: .A = data

 Memory: DMA_LIST updated

 Flags: status valid

LDA_FAR enables applications to read data from any other bank. It

builds a DMA_LIST to fetch one byte, executes the DMA, and reads the

byte. It's a ROM routine.

15. $FF77 STA_FAR ;STA (.X),Y from bank .Z

 Preparation:

 Registers: .A = data

 .X = pointer to base page pointer

 .Y = index

 .Z = bank (0-FF)

 Memory: setup indirect vector

 Flags: none

 Calls: none

 Results:

 Registers: .X used

 Memory: DMA_LIST updated

 Flags: status invalid

STA_FAR enables applications to write data to any other bank. It

builds a DMA_LIST to stash one byte, and executes the DMA. It's a ROM

routine.

16. $FF7A CMP_FAR ;CMP (.X),Y from bank .Z

 Preparation:

 Registers: .A = data

 .X = pointer to a base page pointer

 .Y = index

 .Z = bank (0-FF)

 Memory: setup indirect vector

 Flags: none

 Calls: none

 Results:

 Registers: .X used

 Memory: none

 Flags: status valid

CMP_FAR enables applications to compare data to any other bank. It

builds calls LDA_FAR and compares the given byte with the byte

fetched. It's a ROM routine.

17. $FF7D PRIMM ;print immediate utility

 Preparation:

 Registers: none

 Memory: none

 Flags: none

 Calls: none

 Results:

 Registers: none

 Memory: none

 Flags: none

 Example:

 JSR $FF7D ;display following text

 .BYTE 'message'

 .BYTE $00 ;terminator

 JMP continue ;execution resumes here

PRIMM is a Kernel utility used to print (to the default output device)

a PETSCII string which immediately follows the call. The string must

be no longer than 255 characters and be terminated by a null ($00)

character. It cannot contain any embedded null characters. Because

PRIMM uses the system stack to find the string and a return address,

you MUST NOT JMP to PRIMM. There must be a valid address on the stack.

3.4.6. BASIC 10.0 MATH PACKAGE

This document details the many user-callable routines available in the

C64DX BASIC 10.0 math package.

FLOATING POINT MATH PACKAGE CONVENTIONS

In BASIC memory the number is PACKED and looks like this:

 +--------+---------+--------+--------+-----+

 | signed | B7=SGN | | | |

 | EXP +---------+ M A N T I S S A | LSB |

 | +$80 | MSB | | | |

 +--------+---------+--------+--------+-----+

Because the mantissa is normalized such that its msb is always 1,

BASIC stores the SIGN of the mantissa here to save a byte of

storage. It must be normalized when put in the FACC (see CONUPK). In

the FACC the NORMALIZED number looks like this:

 $63 $64 $65 $66 $67 $68

 FACEXP FACHO FACMOH FACMO FACLO FACSGN

 +--------+---------+--------+--------+-----+-------+

 | signed | BIT 7=1 | | | | SIGN |

 | EXP +---------+ M A N T I S S A | LSB |+ = $00|

 | +$80 | MSB | | | |- = $00|

 +--------+---------+--------+--------+-----+-------+

Negative exponents are not stored 2's complement. The maximum exponent

is 10^38 ($FF) and the minimum is 10^-39 ($01). A zero value for the

exponent means the number is zero. Since the exponent is a power of 2,

it can be described as the number of left (EXP>$80) or right

(EXP<=$80) shifts to be performed on the normalized mantissa to create

the binary representation of the value. There is a second floating

accumulator called ARG which has the same layout. It is located at $6A

through $6F. Throughout the math package the floating point format is:

 * the mantissa is 24 bits long.

 * the binary point is to the left of the msb.

 * the mantissa is always positive, and its msb is always 1.

 * number = mantissa * 2^exponent, sign in FACSGN.

 * the sign of the exponent is the msb of the exponent.

 * the exponent is stored in excess $80 (i.e., it is a signed

 8-bit number with $80 added to it.)

 * an exponent of zero means the number is zero. (Note that

 the rest of the accumulator cannot be assumed to be zero.)

 * to keep the same number in the accumulator while shifting:

 right shifts --> increment exponent

 left shifts --> decrement exponent

Arithmetic routine calling conventions:

 * For one argument functions:

 the argument is in the FACC.

 the result is left in the FACC.

 * For two argument operations:

 the first argument is in MEMORY (packed) or ARG (unpacked).

 the second argument is in the FACC.

 the result is left in the FACC.

 * Always call ROM routines with SYSTEM memory in context (BANK $FF).

A note concerning precision. Since the mantissa is always normalized,

the high order bit of the most significant byte is always one. This

guarantees at least 40 bits (5 byte mantissa times 8 bits each) of

precision, which is approximately 9 significant digits plus a few bits

for rounding. In fact, there is a 'rounding' byte, FACOV ($71), which

should, for the greatest degree of precision, be loaded whenever you

load the FACC. The high order bit of FACOV is utilized in most of the

math routines. While some of the 'movement' routines 'round' the

loaded floating point number (i.e., FACOV = $00), others (such as

CONUPK) do not - assuming the value of FACOV is the useful result of

an operation in progress. In 99% of the cases you need not worry about

it, as its significance is virtually nil. For the greatest degree of

precision however, use it.

A few examples of normalized (FACC) floating point numbers:

 VALUE EXP M A N T I S S A SIGN

------- ----- -------------------------- ----

 1E38 = FF 96 76 99 53 00

 4E10 = A4 95 02 F9 00 00

 2E10 = A3 95 02 F9 00 00

 1E10 = A4 95 02 F9 00 00

 10 = 84 A0 00 00 00 00

 1 = 81 80 00 00 00 00

 .5 = 80 80 00 00 00 00

 .25 = 7F 80 00 00 00 00

 .6 = 80 99 99 99 9A 00

1E-04 = 73 D1 B7 59 59 00

1E-37 = 06 88 1C EA 15 00

1E-38 = 02 D9 C7 DC EE 00

3E-39 = 01 82 AB 1E 2A 00

 0 = 00 xx xx xx xx 00

 -1 = 81 80 00 00 00 FF

 -5 = 83 A0 00 00 00 FF

Now for a simple example of deriving the actual binary from the FACC:

 5 = 83 A0 00 00 00 00

 | \

 | \

 ($83-$80) ($A0)

 |

which means: 2^3 * .10110000, or shift mantissa LEFT 3,

which gives: 101.00000 (binary) or 5.0 (hex)

=-

NAME: AYINT

FUNCTION: CONVERT FLOATING POINT TO INTEGER

PREPARATION: FACC contains floating point number (-32768<=n<=32767)

RESULT: FACMO ($66) contains signed integer (msb)

 FACLO ($67) contains signed integer (lsb)

ERROR: ?ILLEGAL QUANTITY ERROR if FACC too big.

EXAMPLE: JSR AYINT ;INT(FACC)

 LDA $66 ;MSB

 LDA $67 ;LSB

=-

NAME: GIVAYF

FUNCTION: CONVERT INTEGER TO FLOATING POINT

PREPARATION: .A contains signed integer (msb)

 .Y contains signed integer (lsb)

RESULT: FACC contains floating point number

EXAMPLE: LDA #>INTEGER

 LDY #<INTEGER

 JSR GIVAYF ;FLOAT (A,Y)

=-

NAME: FOUT

FUNCTION: CONVERT FLOATING POINT TO ASCII STRING

PREPARATION: FBUFFR ($100) contains ASCII string (null terminated)

 .A contains pointer to string (lsb)

 .Y contains pointer to string (msb)

EXAMPLE: JSR FOUT ;CONVERT FACC TO STRING AT $100

=-

NAME: VAL_1

FUNCTION: CONVERT ASCII STRING TO FLOATING POINT

PREPAPATION: INDEX1 ($24,$25) contains pointer to string

 .A contains length of string

SPECIAL NOTES: String *MUST* be in var bank. Any invalid character

 terminates conversion when encountered (i.e., acts

 like a terminator).

RESULT: FACC contains floating point number

EXAMPLE: LDA #<POINTER

 LDY #>POINTER

 STA INDEX1 ;SET POINTER TO STRING

 STY INDEX1+1

 LDA #LENGTH ;SET STRING LENGTH

 JSR VAL_1 ;FACC = VAL(STRING)

=-

NAME: GETADR

FUNCTION: CONVERT FLOATING POINT TO ADDRESS

PREPARATION: FACC contains floating point number (0<=n<=65535)

RESULT: POKER ($16,$17) contains unsigned integer address

ERROR: ?ILLEGAL QUANTITY ERROR if FACC too big.

EXAMPLE: JSR GETADR ;ADR(FACC)

 LDA $16 ;LSB

 LDA $17 ;MSB

=-

NAME: FLOATC

FUNCTION: CONVERT ADDRESS TO FLOATING POINT

PREPARATION: FACHO ($64) contains address (msb)

 FACMOH ($65) contains address (lsb)

 .X contains exponent ($90 always)

 .C=1 if positive (always)

RESULT: FACC contains floating point number

ERROR: ?OVERFLOW ERROR if FACC too big.

EXAMPLE: LDA #<ADDRESS

 LDY #>ADDRESS

 STA FACMOH ;SET ADDRESS

 STY FACHO

 LDY #$90 ;EXPONENT

 SEC ;POSITIVE

 JSR FLOATC ;FLOAT ADDRESS

=-

NAME: FSUB

FUNCTION: FACC = MEMORY - FACC

PREPARATION: FACC contains floating point subtrahend

 .A = pointer (lsb) to packed floating point minuend

 .Y = pointer (msb) to packed floating point minuend

SPECIAL NOTES: The minuend *MUST* be in VARBANK in packed

 format. FSUB calls CONUPK to normalize it.

RESULT: FACC contains floating point difference

ERROR: ?OVERFLOW ERROR if FACC too big.

EXAMPLE: LDA #<POINTER

 LDY #>POINTER ;SET POINTER TO *PACKED* MINUEND

 JSR FSUB ;SUBTRACT MEM FROM FACC, DIFF IN FACC

=-

NAME: FSUBT

FUNCTION: FACC = ARG - FACC

PREPARATION: FACC contains floating point subtrahend

 ARG contains floating point minuend

SPECIAL NOTES: This routine is similar to FSUB. The only difference

 is the call to CONUPK. (FSUBT assumes you have

 already loaded ARG with unpacked minuend.)

RESULT: FACC contains floating point difference

ERROR: ?OVERFLOW ERROR if FACC too big.

EXAMPLE: JSR FSUBT ;SUBTRACT ARG FROM FACC, DIFF IN FACC

=-

NAME: FADD

FUNCTION: FACC = MEMORY + FACC

PREPARATION: FACC contains floating point addend

 .A = pointer (lsb) to packed floating point addend

 .Y = pointer (msb) to packed floating point addend

SPECIAL NOTES: The second addend *MUST* be in VARBANK in

 packed format. FADD calls CONUPK to normalize it.

RESULT: FACC contains floating point sum

ERROR: ?OVERFLOW ERROR if result too big

EXAMPLE: LDA #<POINTER

 LDY #>POINTER ;SET POINTER TO *PACKED* ADDEND

 JSR FADD ;ADD MEMORY TO FACC, SUM IN FACC

=-

NAME: FADDT

FUNCTION: FACC = ARG + FACC

PREPARATION: FACC contains floating point addend

 ARG contains floating point addend

 ARISGN ($70) contains EOR(FACSGN,ARGSGN)

 .A contains FACEXP

SPECIAL NOTES: This routine is similar to FADD. The only

 difference is the call to CONUPK.

 * You *MUST* put resultant sign in ARISGN. *

 * You *MUST* load FACEXP ($63) immediately *

 * before call so that status flags are set! *

RESULT: FACC contains floating point sum

ERROR: ?OVERFLOW ERROR if result too big

EXAMPLE: LDA FACSGN

 EOR ARGSGN

 STA ARISGN ;SET RESULTANT SIGN

 LDA FACEXP ;SET STATUS FLAGS PER FACEXP

 JSR FADDT ;ADD ARG TO FACC, SUM IN FACC

=-

NAME: FMULT

FUNCTION: FACC = MEMORY * FACC

PEPARATION: FACC contains floating point multiplier

 .A = pointer (lsb) to packed float. point multiplicand

 .Y = pointer (msb) to packed float. point multiplicand

SPECIAL NOTES: The multiplicand *MUST* be in VARBANK in

 packed format. FMULT calls CONUPK to normalize it.

RESULT: FACC contains floating point product

ERROR: ?OVERFLOW ERROR if result too big

EXAMPLE: LDA #<POINTER

 LDY #>POINTER ;SET POINTER TO *PACKED* MULTIPLICAND

 JSR FMULT ;MULTIPLY MEM BY FACC, PRODUCT IN FACC

=-

NAME: FMULTT

FUNCTION: FACC = ARG * FACC

PREPARATION: FACC contains floating point multiplier

 ARG contains floating point muitiplicand

SPECIAL NOTES: This routine is similar to FMULT. The only difference

 is the call to CONUPK. (FMULTT assumes you have

 already loaded ARG with unpacked multiplicand.)

RESULT: FACC contains floating point product

ERROR: ?OVERFLOW ERROR if result too big

EXAMPLE: JSR FMULTT ;MULTIPLY ARG BY FACC, PRODUCT IN FACC

=-

NAME: FDIV

FUNCTION: FACC = MEMORY / FACC

PREPARATION: FACC contains floating point divisor

 .A = pointer (lsb) to packed floating point dividend

 .Y = pointer (msb) to packed floating point dividend

SPECIAL NOTES: The dividend *MUST* be in VARBANK in packed

 format. FDIV calls CONUPK to normalize it.

RESULT: FACC contains floating point quotient

ERROR: ?DIVISION BY ZERO ERROR if FACC zero

EXAMPLE: LDA #<POINTER

 LDY #>POINTER ;SET POINTER TO *PACKED* DIVIDEND

 JSR FDIV ;DIVIDE MEM BY FACC, QUOTIENT IN FACC

=-

NAME: FDIVT

FUNCTION: FACC = ARG / FACC

PREPARATION: FACC contains floating point divisor

 ARG contains floating point divldend

 ARISGN ($70) contains EOR(FACSGN,ARGSGN)

 .A contains FACEXP

SPECIAL NOTES: This routine is similar to FDIV. The only difference

 is the call to CONUPK. (FDIVT assumes you have

 already loaded ARG with unpacked dividend.)

 * You *MUST* put resultant sign in ARISGN. *

 * You *MUST* load FACEXP ($63) immediately *

 * before call so that status flags are set! *

RESULT: FACC contains floating point quotient

ERROR: ?DIVISION BY ZERO ERROR if FACC zero

EXAMPLE: LDA FACSGN

 EOR ARGSGN

 STA ARISGN ;SET RESULTANT SIGN

 LDA FACEXP ;SET STATUS FLAGS PER FACEXP

 JSR FDIVT ;DIVIDE ARG BY FACC, QUOTIENT IN FACC

=-

NAME: LOG

FUNCTION: FACC = LOG(FACC) natural logarithm (base e)

PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point logarithm

ERROR: ?ILLEGAL QUANTITY ERROR if FACC negative or zero

EXAMPLE: JSR LOG ;FACC = LOG(FACC)

=-

NAME: INT

FUNCTION: FACC = INT(FACC)

PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point greatest integer

EXAMPLE: JSR INT ;FACC = INT(FACC)

=-

NAME: SQR

FUNCTION: FACC = SQR(FACC)

PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point square root

ERROR: ?ILLEGAL QUANTITY ERROR if FACC negative

EXAMPLE: JSR SQR ;FACC = SQR(FACC)

=-

NAME: NEGOP

FUNCTION: FACC = -FACC (invert sign of FACC)

PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point number with sign inverted

EXAMPLE: JSR NEGOP ;FACC = -FACC

=-

NAME: FPWR

FUNCTION: FACC = ARG ^ MEMORY

PREPARATION: ARG contains floating point number

 .A = pointer (lsb) to packed floating point power

 .Y = pointer (msb) to packed floating point power

SPECIAL NOTES: The power *MUST* be in ROM or SYSTEM RAM in packed

 format as FPWR calls MOVFM to unpack it into FACC.

RESULT: FACC contains floating point result

ERROR: ?ILLEGAL QUANTITY ERROR if ARG negative

 ?OVERFLOW ERROR if result too big

EXAMPLE: LDA #<POINTER

 LDY #>POINTER ;SET POINTER TO *PACKED* POWER

 JSR FPWR ;COMPUTE ARG ^ MEM, RESULT IN FACC

=-

NAME: FPWRT

FUNCTION: FACC = ARG ^ FACC

PREPARATION: ARG contains floating point number

 FACC contains floating point power

 .A contains FACEXP

SPECIAL NOTES: This routine is similar to FPWR. The only difference

 is the call to MOVFM. (FPWRT assumes you have already

 loaded FACC with unpacked power.)

 * You *MUST* load FACEXP ($63) immediately *

 * before call so that status flags are set! *

RESULT: FACC contains floating point result

ERROR: ?ILLEGAL QUANTITY ERROR if ARG negative

 ?OVERFLOW ERROR if result too big

EXAMPLE: LDA FACEXP ;SET STATUS FLAGS PER FACEXP

 JSR FPWRT ;COMPUTE ARG ^ FACC, RESULT IN FACC

=-

NAME: EXP (compute e ^ FACC)

FUNCTION: FACC = EXP (FACC)

PREPARATION: FACC contains floating point number

RESULT: FACC contains fIoating point result

ERROR: ?OVERFLOW ERROR if FACC too big

EXAMPLE: JSR EXP ;FACC = EXP(FACC)

=-

NAME: COS

FUNCTION: FACC = COS(FACC)

PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point cosine (in radians)

EXAMPLE: JSR COS ;FACC = COS(FACC)

=-

NAME: SIN

FUNCTION: FACC = SIN(FACC)

PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point sine (in radians)

EXAMPLE: JSR SIN ;FACC = SIN(FACC)

=-

NAME: TAN

FUNCTION: FACC = TAN(FACC)

PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point tangent (in radians)

EXAMPLE: JSR TAN ;FACC = TAN(FACC)

=-

NAME: ATN

FUNCTION: FACC = ATN(FACC)

PREPARATION: FACC contains floating point number

RESULT: FACC contains floating point arctangent (in radians)

EXAMPLE: JSR ATN ;FACC = ATN(FACC)

=-

NAME: ROUND (round to 40 bits of precision)

FUNCTION: FACC = FACC + FACOV(msb)

PREPARATION: FACC contains floating point number

 FACOV(msb) contains 'extra' precision

RESULT: none if FACC zero or FACOV(msb) zero

 one extra bit ADDED to FACC lsb if FACOV(msb) is set

EXAMPLE: JSR ROUND ;ROUND FACC

=-

NAME: ABS (make FACSGN(msb) = $00)

FUNCTION: FACC = ABS(FACC)

PREPARATION: FACC contains (SIGNED) floating point number

RESULT: FACC contains (POSITIVE) floating point

EXAMPLE: JSR ABS ;FACC = ABS(FACC)

=-

NAME: SGN

FUNCTION: .A = SGN(FACC)

PREPARATION: FACC contains floating point number

RESULT: .A --> $FF if FACC negative (FACC < 0)

 $00 if FACC zero (FACC = 0)

 $01 if FACC positive (FACC > 0)

 (status flags reflect contents of .A, carry invalid)

EXAMPLE: JSR SGN ;SGN(FACC)

 ; BEQ will trap =0

 ; BNE will trap <>0

 ; BMI will trap <0

 ; BPL will trap >=0 etc.

=-

NAME: FCOMP (compare FACC with MEMORY)

FUNCTION: .A = FCOMP(FACC,MEMORY)

PREPARATION: FACC contains floating point number

 .A = pointer (lsb) to packed floating point number

 .Y = pointer (msb) to packed floating point number

SPECIAL NOTES: The number *MUST* be in ROM, or RAM currently in

 context below ROM, in PACKED format.

 *** FACOV is significant!

RESULT: .A --> SFF if FACC < MEMORY

 $00 if FACC = MEMORY

 $01 if FACC > MEMORY

 (status flags reflect contents of .A, carry invalid)

EXAMPLE: LDA #<POINTER

 LDY #>POINTER ;SET POINTER TO *PACKED* NUMBER

 JSR FCOMP ;COMPARE FACC WITH MEMORY

 ; BEQ will trap FACC = MEM

 ; BNE will trap FACC <> MEM

 ; BMI will trap FACC < MEM

 ; BPL will trap FACC >= MEM etc.

=-

NAME: RND0

FUNCTION: FACC = random floating point number (0<n<1)

PREPARATION: .A --> $00 to generate a 'true' random number

 $01 to generate next random number in sequence

 $FF to start a new sequence of random numbers

 based upon current contents of FACC.

SPECIAL NOTES: *MUST* be called with the system bank in context.

 MUST load .A immediately before call so that status

 flags reflect contents of .A

RESULT: FACC = floating point random number

EXAMPLE: LDA #$FF ;START REPRODUCEABLE SEQUENCE BASED ON FACC

 JSR RND0

 LDA #$01

 JSR RND0 ;GENERATE (FIRST) RANDOM NUMBER IN SEQUENCE

=-

NAME: CONUPK

FUNCTION: ARG = UNPACK(RAM_CONSTANT)

PREPARATION: .A = pointer (lsb) to packed floating point number

 .Y = pointer (msb) to packed floating point number

SPECIAL NOTES: The number *MUST* be in VARBANK or SYSTEM RAM in

 packed format.

RESULT: ARG loaded with normalized floating point number

 ARISGN ($6F) contains EOR(FACSGN,ARGSGN)

 .A contains FACEXP (status reflects contents of .A)

EXAMPLE: LDA #<POINTER

 LDY #>POINTER ;SET POINTER TO *PACKED* NUMBER

 JSR CONUPK ;LOAD ARG

 ; BEQ traps ARG = $00

=-

NAME: ROMUPK

FUNCTION: ARG = UNPACK(ROM_CONSTANT)

PREPARATION: .A = pointer (lsb) to packed floating point number

 .Y = pointer (msb) to packed floating point number

SPECIAL NOTES: The number *MUST* be in ROM or SYSTEM RAM currently

 in context (otherwise identical to CONUPK).

RESULT: ARG loaded with normalized floating point number

 ARISGN ($6F) contains EOR(FACSGN,ARGSGN)

 .A contains FACEXP (status reflects contents of .A)

EXAMPLE: LDA #<POINTER

 LDY #>POINTER ;SET POINTER TO *PACKED* NUMBER

 JSR ROMUPK ;LOAD ARG

 ; BEQ traps ARG = $00

=-

NAME: MOVFRM

FUNCTION: FACC = UNPACK(RAM_CONSTANT)

PREPARATION: .A = pointer (lsb) to packed floating point number

 .Y = pointer (msb) to packed floating point number

SPECIAL NOTES: The number *MUST* be in VARBANK or SYSTEM RAM in

 packed format.

RESULT: FACC loaded with normalized floating point number

 FACOV ($71) cleared

EXAMPLE: LDA #<POINTER

 LDY #>POINTER ;SET POINTER TO *PACKED* NUMBER

 JSR MOVFRM ;LOAD FACC

=-

NAME: MOVFA

FUNCTION: FACC = ARG

PREPARATION: ARG contains floating point number

RESULT: FACC contains same number as ARG

 FACOV ($71) cleared

 .A contains FACEXP (but status invalid!)

EXAMPLE: JSR MOVFA ;COPY ARG TO FACC

=-

NAME: MOVAF

FUNCTION: ARG = FACC

PREPARATION: FACC contains floating point number

RESULT: FACC will be ROUNDed and FACOV cleared.

 ARG contains same number as FACC

 .A contains FACEXP (but status invalid!)

EXAMPLE: JSR MOVAF ;COPY FACC TO ARG

3.5. C65 DOS Documentation

 DIRECTORY HEADER DEFINITION

--

 BYTE DESCRIPTION

 ------ --

 0 TRACK mumber which points to the 1st dir. sector

 1 SECTOR number which points to the 1st dir. sector

 2 Disk format version number, which is currently 'D'

 512 byte sectors 20 per track

 20 Sectors per track

 40 Tracks per side

 2 sides (note they're inverted from normal MFM disk)

 3 Must = 0

 4 Bytes 4 thru 21 contain the volume name (label)

 22 Bytes 22 and 23 contain the disk id (fake)

 24 Must contain an $A0

 25 DOS version number (CBMDOS = 1, 1581 = 3)

 26 Format version number (currently = 'D' (fake))

 27 Bytes 27 thru 28 = $A0

 29 NOT USED AT THIS TIME

 30 NOT USED AT THIS TIME

 31 NOT USED AT THIS TIME

 32 NOT USED AT THIS TIME

 33 NOT USED AT THIS TIME

 34 Track number which points to this directory header

 35 Sector number which points to this directory header

 36 Bytes 36 thru 255 are not used at this time

NOTE: If this is a subdirectory header then BYTES 32 and 33 contain

the TRACK & SECTOR number of the DIRECTORY SECTOR that points to this

DIRECTORY HEADER. See the partition command for a better description.

If this is the ROOT header then they will contain a $00.

 BAM DEFINITION

--

 BYTE DESCRIPTION

 ------ --

 0 Track link for next bam sector, if last then end of BAMs

 1 Sector link

 2 Format type this disk was formatted under

 3 Compliment version number of byte 2 above

 4-5 Disk ID used when this disk was formatted

 6 I/O byte used as follows;

 BIT 7- When set Verify is performed after each disk write

 BIT 6- Perform CRC check (not used by CBDOS)

 BIT 1- Huge relative files disabled

 7 Auto loader flag (not used by CBDOS)

 8-15 Not used at this time by any CBM DOS versions

 16-255 BAM image

 BAM IMAGE

--

 BYTE DESCRIPTION

 ------ --

 0 Number of free sectors on this track

 1 MSB flag for sector 7, LSB flag for sector 0

 2 MSB flag for sector 15, LSB flag for sector 8

 3 MSB flag for sector 23, LSB flag for sector 16

 4 MSB flag for sector 31, LSB flag for sector 24

 5 MSB flag for sector 39, LSB flag for sector 32

 DIRECTORY SECTOR DEFINITION

--

 BYTE DESCRIPTION

 ------ --

 0 TRACK -- Points to the next directory track.

 1 SECTOR -- Points to the next directory sector.

 (IF TRACK = 0 THEN THIS IS THE LAST DIRECTORY SECTOR)

 FILE ENTRY DESCRIPTION

--

 BYTE DESCRIPTION

 ------ --

 0 File status byte which is used as follows:

 BIT 7- Set indicates properly closed file

 BIT 6- File is locked (read only)

 BIT 5- Save with replace is CURRENTLY in effect,

 when file is closed this bit is deleted.

 BIT 4- NOT USED AT THIS TIME

 BIT 3- Bits 3 thru 0 are used to indicate the filetype:

 0=DEL, 1=SEQ, 2=PRG, 3=USER, 4=REL, 5=CBM, 6=not used

 7=used by dos to represent DIRECT type of file access

 1 TRACK - link to the 1st sector of data for this file.

 2 SECTOR - link to the 1st sector of data for this file.

 3 Bytes 3-18 contain the filename in ASCII, padded with $A0

 19 Side Sector TRACK link for relative files

 GEOS - Track number of GEOS file header

 20 Side Sector SECTOR link for relative files

 GEOS - Sector number of GEOS file header

 21 Record size for relative files

 GEOS - File structure type 0=SEQ, 1=VLIR

 22 GEOS - FILE TYPES:

 13 = Swap file 12 = System boot 11 = Disk device

 10 = Input device 09 = Printer 08 = Font

 07 = Appl. data 06 = Applications 05 = Desk Acc.

 04 = System 03 = Basic data 02 = Assembly

 00 = Not GEOS

 23 Not used by CBM DOS previous to CBDOS

 GEOS - DATE: Year last modified (offset from 1990)

 CBDOS- Bits 7-4 contain the upper 4 bit's from the

 file type byte (see byte 0 above) for the

 UNNEW, UNSRATCH commands used by CBDOS

 24 Not used by CBM DOS previous to CBDOS

 GEOS - DATE: Month last modified (1 thru 12)

 CBDOS- Bit's 7 thru 4 contain the lower 4 bit's from the

 file type byte (see byte 23 above)

 25 GEOS - DATE: Day last modified (1 thru 31)

 26 TRACK (from 1) for the save with replace file

 GEOS - DATE: Hour last modified (0 thru 23)

 27 SECTOR (from 2) for the save with replace file

 GEOS - DATE: Minute last modified (0 thru 59)

 28 LSB of the # of sectors used by this file

 29 MSB of the # of sectors used by this file

NOTE: Each sector in the directory contains 8 entries of 32 bytes each.

 SIDE SECTOR FORMAT DEFINITION

--

 BYTE DESCRIPTION

 ------ --

 0 Next Side Sector TRACK link ($FF if last)

 1 Next Side Sector SECTOR link

 2 Side Sector number

 If this is a SUPER SIDE SECTOR then this contains an $FE

 (see the description of the SUPER SIDE SECTOR below)

 3 Record Size

 4-5 TRACK & SECTOR link of Side Sector number 0

 6-7 TRACK & SECTOR link of Side Sector number 1

 8-9 TRACK & SECTOR link of Side Sector number 2

 10-11 TRACK & SECTOR link of Side Sector number 3

 12-13 TRACK & SECTOR link of Side Sector number 4

 14-15 TRACK & SECTOR link of Side Sector number 5

 16-17 TRACK & SECTOR link of the DATA BLOCK #0

 18-19 TRACK & SECTOR link of the DATA BLOCK #l

 etc...

NOTE: There are 91 groups to the largest file that this DOS can handle.

 SUPER SIDE SECTOR FORMAT DEFINITION

--

 BYTE DESCRIPTION

 ------ --

 0 Next Side Sector TRACK link (SFF if last)

 1 Next Side Sector SECTOR

 2 Contains an SFE to indicate this is a SUPER SIDED SECTOR

 3-4 TRACK & SECTOR link of Side Sector number 0

 5-6 TRACK & SECTOR link of Side Sector number 1

 7-8 TRACK & SECTOR link of Side Sector number 2

 9-10 TRACK & SECTOR link of Side Sector number 3

 11-12 TRACK & SECTOR link of Side Sector number 4

 13-14 TRACK & SECTOR link of Side Sector number 5

253-254 TRACK & SECTOR link of Side Sector number 125

NOTE:There are 91 groups to the largest file that this DOS can handle.

 DATA SECTOR DEFINITION

--

 BYTE DESCRIPTION

 ------ --

 0-1 TRACK and SECTOR link to the next data block. If track=0

 then sector contains the number of bytes used in this

 sector (which will always be at least 2 on the last block

 for the T&S link bytes).

NOTE: Used by DEL, SEQ, PRG, REL (data blocks) and USR.

;*---*

;* Format a track *

;* 10 sectors per track numbered 1-10, 512 byte sectors *

;*---*

;* 12 Sync marks 00 *

;* 3 Header ID marks w/missing clock A1 *

;* 1 Header ID FE *

;* 4 Header bytes Track *

;* Side *

;* Sector *

;* Sector size *

;* 2 Header CRC bytes xx,xx *

;* 22 Data gap bytes 4E *

;* 12 Sync marks 00 *

;* 3 Data block ID marks w/missing clock A1 *

;* 1 Data block ID FB *

;* 512 Data block fill bytes 00 *

;* 2 Data block CRC bytes xx,xx *

;* 24 Sector gap bytes 4E *

;*---*

;*---*

;* Calculate the 2 bytes CRC for each sector header of an entire *

;* track of 10 sectors. AXYZ are trashed. *

;* *

;* This routine is based on the Cyclical Redundancy Check *

;* on the polynomial: A^16+A^12+A^5+1. *

;* *

;* HEADER contains TRACK,SIDE,SECTOR,2 [sector size] *

;* *

;* DO WHILE ne = 0 *

;* DO FOR each bit in the data byte (.a) [from lsb to msb] *

;* IF (LSB of crc) eor (LSB or data) *

;* THEN CRC = (CRC/2) EOR polynomial *

;* ELSE CRC = (CRC/2) *

;* END IF *

;* LOOP *

;* LOOP *

;*---*

;*---*

;* SIDE = (LogicalSector >= 20) AND 1 *

;* TRACK = LogicalTrack - 1 *

;* StartingSector = SIDE * 20 *

;* SECTOR = (LogicalSector - StartingSector) / 2 + 1 *

;* HALF = (LogicalSector - StartingSector) AND 1 *

;*---*

C65 Partition and Subdirectory Syntax

This specification describes a _proposed_ C65 partition/subdirectory

parser.

 OPEN la,fa,sa, "[#]/path/:filename"

 OPEN la,fa,15, "<cmd>#/path/:[cmd_string]"

where: # is an optional "drive" number, 0-3.

 /path/ is a partition or subdirectory name

 : delimits the path from the filename

and: <cmd> is a DOS command (such as I,N,S,C, etc.)

 (cmd_string) is an optional string required by some commands.

The first example illustrates a typical filename specification, the

second example illustrates a command channel instruction.

 OPEN la,fa,sa, "0/SUBDIR1/SUBDIR2/:FILE,S,W"

 Action taken Why

 ------------------------------------ -------------------------------

 1. Select the "root" 0

 2. Find & enter two subdirectories /SUBDIR1/SUBDIR2/:

 (the trailing "/" is required

 to be compatible with CMD?)

 3. Create & open file for writing FILE,S,W

The "root" or "drive number", path, and ":" are all optional. If they

are omitted, the file is opened in the current partition. Some

similar, and legal, syntaxes are:

 OPEN la,fa,sa, "FILE,S,W" (create "FILE" in current part)

 OPEN la,fa,sa, ":FILE,S,W" (create "FILE" in current part)

 OPEN la,fa,sa, "0:FILE,S,W" (create "FILE" in current part)

 OPEN la,fa,sa, "/SUBDIR/ FILE,S,W" (from current partition, enter

 "SUBDIR" and create "FILE")

 OPEN la,fa,sa, "//SUBDIR/:FILE,S,W" (from Root partition, enter

 "SUBDIR" and create "FILE")

 OPEN la,fa,sa, "@0/SUBDIR/:FILE" (open "FILE" in "SUBDIR" for

 writing)

Some questionable syntaxes, and their affect, are:

 OPEN la,fa,sa, "0FILE,S,W" (this would create file "0FILE")

 OPEN la,fa,sa, "/SUBDIR/FILE,S,W" (creates file "/SUBDIR/FILE"

 OPEN la,fa,sa, "@0:FILE,S,W" (open filr "FILE" in current

 partition for writing)

 OPEN la,fa,sa, "/0:FILE,S,W" (? should create file "0:file",

 note this is not the cmd chnl)

Some legal commands:

 OPEN la,fa,sa,"I0" (initialize current partition)

 OPEN la,fa,sa,"I//" (initialize Root)

 OPEN la,fa,sa,"I0/SUBDIR/:" (enter "SUBDIR" and initialize)

 OPEN la,fa,sa,"N0/SUBDIR/:NAME,ID" (enter "SUBDIR" and "new" it)

 OPEN la,fa,sa,"S0/SUBDIR/:FILE" (delete "FILE" in "SUBDIR")

 OPEN la,fa,sa,"/0:SUBDIR" (1581 partition select, "/" in

 this context is a command

 itself)

Some proposed general rules, designed to be compatible with both the

1581 subpartitioning syntax and CMD syntax:

 1. The name of a subdirectory must always be separated from the

 filename by a colon (":").

 2. Each subdirectory name must be delimited by a slash ("/").

 3. To select Root directory (partiton), specify two slashes ("//").

 This allows older applications specifying the drive number ("0:")

 to be run in a partition.

 CURRENT PARTITION ROUTINES

Create Partition:

 "/0:PAR_NAME,"+(START-TRK)+(START-SECTOR)+(LO-BLKS)+(HI-BLKS)

Select Partition:

 "/0:PAR_NAME" will select given filname as subdirectory

 "/0" will select root directory

 SELECT PARTITION

This routine will allow the user to quickly select partition paths

using the normal SA values other than 15. To use this new method the

user opens the file using a normal SA and the filename MUST be

structured as follows:

 "/<drive>:PATH_1/PATH_2/PATH_3..... ETC"

If the dos does not find one of the filenames in the file path stream

it will check to see if the file exists in the current directory and

if it does it will open the file in the normal method as it does now.

;***

;* FILE_COMMANDS *

;* *

;* The following set of command channel routines were added to allow *

;* the user a graceful way of manipulating files: *

;* *

;* "F-L" Locate a file to prevent it from being scratched *

;* "F-U" Unlock a file and allow it to be scratched *

;* "F-R" Restore a file after it has been scratched *

;* *

;* Following each command above is the drive number, followed by a *

;* colon then followed by the filename(s). For example, to lock all *

;* the files on drive 0 you would send the following file command: *

;* *

;* OPENXX,XX,15,"F-L0:*" *

;* *

;* OPENXX,XX,15,"F-L0:FNAME,FNAME1,FNAME2,... ETC" *

;***

;***

;* BLOCK STATUS *

;* *

;* Syntax: "B-S:CHANNEL NUMBER, DRIVE NUMBER, TRACK, SECTOR" *

;* *

;* Then check error channel for normal errors then get one byte from *

;* from the channel number. If it is a 0 then the sector is free. *

;* 1 indicates the sector is in use. *

;* *

;* This command was added to enable an easy method of finding out if *

;* a given track or sector is currently marked as being used in a *

;* drive's BAM or not. *

;* *

;* CBDOS CHGUTIL *

;* *

;* COMMAND COMMENTS DRIVES USED ON *

;* "U0>B"+chr$(n) b = set fast/slow serial bus 1581 *

;* "U0>D"+chr$(n) d = set dirsecinc CBDOS *

;* "UO>H"+chr$(n) h = set head selection 0,1 1571 *

;* "U0>M"+chr$(n) m = set dos mode 1571 *

;* "U0>R"+chr$(n) r = set dos retries on errors 1571,1581 *

;* "UO>S"+chr$(n) s = set secinc 1571,1581,CBDOS *

;* "U0>V"+chr$(n) v = set verify on/off 1581,CBDOS *

;* "U0>?"+chr$(n) ? = set device number CBDOS *

;* "U0>L"+chr$(n) = set large rel files on/off CBDOS *

;* "U0>MR"+ xx = perform memory read 1581 *

;* "U0>MW"+ xx = perform memory write 1581 *

;* 12345 *

;* ^--------------- CMDSIZ points to end of starting string @1 *

;***

FLOPPY DISK CONTROLLER ERRORS

 IP FDC DESCRIPTION

 -- --- -----------

 0 (0) no error

 20 (2) can't find block header

 23 (5) checksum error in data

 25 (7) write-verify error

 26 (8) write w/ write protect on

 27 (9) crc error in header

 Information description

 1 files scratched

 2 selected partition

 3 files locked

 4 files unlocked

 5 files restored

 Parameter errors

 30 general syntax

 31 invalid command

 32 long line

 33 invalid filname

 34 no filenames given

 Relative file errors

 50 record not present

 51 overflow in record

 52 file too large

 53 big relative files disabled

 Open routine errors

 60 file open for write

 61 file not open

 62 file not found

 63 file exists

 64 file type mismatch

 Sector management errors

 65 no block

 66 illegal track or sector

 67 illegal system t or s

 General channel/block errors

 02 channel selected

 70 no channels available

 71 bam corrupted error

 72 disk full

 73 cbdos v1.0

 74 drive not ready

 75 format error

 76 controller error

 77 selected partition illegal

 78 directory full

 79 file corrupted

3.6. C64DX RS-232 DRIVER

 00A7 rs232_status - UART status byte

 00A8 rs232_flags - open flag, xon/xoff status

 - b7: channel open (reset)

 - b6: flow control (1=x-line)

 - b5: duplex (1=half)

 - b1: XOFF received

 - b0: XOFF sent

 00A9 rs232_jam - system character to xmit

 00AA rs232_xon_char - XON character (null=disabled)

 00AB rs232_xoff_char - XOFF character (null=disabled)

 00B0 rs232_xmit_empty - xmit buffer empty flag (0=empty)

 00B1 rs232_rcvr_buffer_lo - lowest page of input buffer

 00B2 rs232_rcvr_buffer_hi - highest page of input buffer

 00B3 rs232_xmit_buffer_lo - lowest page of output buffer

 00B4 rs232_xmit_buffer_hi - highest page of output buffer

 00B5 rs232_high_water - point at which receiver XOFFs

 00B6 rs232_low_water - point at which receiver XONs

 00C4 rs232_rcvr_head - pointer to end of buffer

 00C6 rs232_rcvr_tail - pointer to start of buffer

 00C8 rs232_xmit_head - pointer to end of buffer

 00CA rs232_xmit_tail - pointer to start of buffer

 RS-232 interrupt-driven handler

How it works: when an RS232 channel is OPENed, buffers are flushed,

all flags and states are reset, and the receiver IRQ is enabled. When

a byte is put into the xmit buffer by BSOUT, the xmit IRQ is enabled.

The xmit IRQ is disabled whenever the xmit buffer is found to be empty

or an XOFF is received (it is enabled whenever an XON is received).

CLOSE will hang until the xmit buffer is empty, and BSOUT will hang

when the xmit buffer is full. IRQs must be allowed by the user at all

times (and especially during BSOUT calls) for proper operation. (The

RS232 channel will work even if IRQs are disabled by the user, but

thoughput will be reduced to the frame rate (normal system raster IRQ)

and the system can hang forever should the xmit buffer become full and

BSOUT is called with a byte to xmit). A successful CLOSE will disable

all RS232 interrupts and re-init everything.

Note that DOS calls disable both IRQ and NMI interrupts while the DOS

code is in context. The remote should be XOFFed to avoid loss of data.

Refer to the UART specification for register description & baud rate

tables.

 Open an RS-232 channel

This is different from the usual C64/C128 command string.

 1 2 3 4 5 6

Command string bytes: baud|word|parity|stop(unused)|duplex|xline

4.0. C64DX DEVELOPMENT SOPPORT

Please photocopy the attached 'C64DX PROBLEM REPORT' and use it to

report any problems.

If you have any requests or recommendations, please send a good

description of it and explain why you want it.

+--+-------------------------------------+

| C64 DX PROBLEM REPORT | Date |

+--+-------------------------------------+

|Please complete this form as completely as possible and mail or express it to:|

| |

| Commodore Business Machines, Inc. Telephone: 215-431-9427 |

| 1200 Wilson Drive Fax: 215-431-9156 |

| West Chester, PA I9380 Email: fred@cbmvax.commodore.com |

| |

| Attention: Fred Bowen, Engineering |

+--+

|Company Name |

+--+

|Company Address |

| |

| |

| |

| |

| |

| |

| |

+--+-------------------------------------+

|Your Name |Your Phone |

+--+-------------------------------------+

|Your system |

| |

| Serial No.________ PCB rev_________ Software ver________ ROM Cksum__________ |

| |

| 4510 rev__________ 4567 rev________ F011(DOS)___________ F018(DMA)__________ |

| |

| Peripherals: |

+---------------------+--+

|Your problem | Explain problem here and show how to cause it. Attach |

| | sample program. |

| ____ C64 mode | |

| ____ C64DX mode | |

| ____ Hardware | |

| ____ Software | |

| ____ Mechanical | |

| ____ Documentation | |

| ____ Compatibility | |

| | It happens: |

| | ____ all the time ____ frequently ____ occasionally |

+---------------------+--+

|In your opinion, how I bad is the problem? ____ Must fix, no workaround |

| |

| ____ I can work around it |

| |

| ____ Check here if you need to be contacted ____ Minor problem |

+--+

|Please leave this space blank |

| |

| |

| |

| |

| |

|Number Received Contacted Completed |

+--+

C64DX System Specification UPDATE

* The Monitor parser now allows PETSCII input/conversion:

 'A prints ASC() value of character

 >1800 'text puts text into memory

 LDA #'A

* IRQ runs during graphics (Kernel finds its own base page). IRQ

 still does not run during DOS activity (not sure if they ever

 will).

* The following Kernel Jump Table Entries have moved (and are still

 subject to further changes):

 FF05 nirq ;IRQ handler

 FF07 monitor_brk ;BRK handler (Monitor)

 FF09 nnmi ;NMI handler

 FF0B nopen ;open

 FF0D nclose ;close

 FF0E nchkin ;chkin

 FF11 nckout :ckout

 FF13 nclrch ;clrch

 FF15 nbasin :basin

 FF17 nbsout ;bsout

 FF19 nstop ;stop key scan

 FF1B ngetin ;getin

 FF1D nclall ;clall

 FF1F monitor_parser ;monitor command parser

 FF21 nload ;load

 FF23 nsave ;save

 FF25 talk

 FF27 listen

 FF29 talksa

 FF2B second

 FF2D acptr

 FF2F ciout

 FF31 untalk

 FF33 unlisten

 FF35 DOS_talk

 FF37 DOS_listen

 FF39 DOS_talksa

 FF3B DOS_second

 FF3D DOS_acptr

 FF3F DOS_ciout

 FF41 DOS_untalk

 FF43 DOS_unlisten

 FF45 Get_DOS

 FF47 Leave_DOS

 FF49 ColdStartDOS <<<new

 FF4B WarmStartDOS <<<new

2.1.2. German/Austrian Reyboard Layout

+----+ +----+----+----+----+ +----+----+----+----+ +----+----+----+----+

|RUN | |ESC |ALT |ASC | NO | | F1 | F3 | F5 | F7 | | F9 | F11| F13|HELP|

|STOP| | | |DIN |SCRL| | F2 | F4 | F6 | F8 | | F10| F12| F14| |

+----+ +----+----+----+----+ +----+----+----+----+ +----+----+----+----+

+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+

| <| ! | " | #
| $ | % | & | ' /| (|) | " | ? | ` | ^ |CLR |INST|

|
 >| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | + á| - '| ś [|HOME|DEL |

+----+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+----+

| TAB | | | | | | Z | | | | | š | | \ | RSTR |

| | Q | W | E | R | T | Y | U | I | O | P | @ | * +| ^]| |

+----+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+------+

|CTRL|SHFT| | | | | | | | | | ™ | Ž | ' | RETURN |

| |LOCK| A | S | D | F | G | H | J | K | L | : [| ;]| = #| |

+----+----+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+--+-+----+----+----+

| C= | SHIFT | Y | | | | | | | < ;| > :| ? _| SHIFT| |

| | | Z | X | C | V | B | N | M | , | . | / -| |
 |

+----+-------+-+--+----+----+----+----+----+----+----+----+-+--+-+----+----+----+

 | | | | | |

 | | |
 |
 |
 |

 +--+ +----+----+----+

Notes:

1/ The operation of national keyboards is identical to C128

 implementation. The ASCII/DIN key replaces the CAPS LOCK key, and

 can be toggled anytime to switch keyboard modes and automatically

 change the display.

2/ The national keyboard contains key legends for both national and

 ASCII modes. The national legends appear on the right top/bottom of

 the keys.

3/ The German keyboard has three (3) "deadkeys". They are accent

 d'aigue, accent grave, and accent circonflex. Pressing the

 "deadkey" followed by a valid vowel or accent character will

 'build' the desired character:

 accent d'aigue: ‚

 accent grave: …, Š, —

 accent circonflex: �, �, Ś, ", –

4/ National character ROM graphic characters differ from the C64 and

 ASCII (English) graphic character sets.

PAINT x, y [,color]

 Working, but not completely to spec. Uses draw pen

 color and fills emptyness to any border.

RND(0) Improved for better "randomness". Uses unused POT of

 second SID chip. PCB must allow lines to float.

SET DISK # (without [TO #] parameter) allows user to clear DS$

 message and specify which drive next DS$ comes from.

SET VERIFY <ON/OFF>

 The new DOS65 defaults to verify-after-write OFF. This

 command works with 1581 drive, too.

* Negative coordinates are now allowed for all graphics commands.

 Some commands require their arguments to be "onscreen" such as

 PAINT.

* BASIC errors now force text mode, and TYPE, LIST, DISK, KEYLOAD,

 LOADIFF now catch all DOS errors. Autoboot filename=AUTOBOOT.C64DX.*

* Opening an RS-232 channel, command string allows setting new

 features:

 1 baud (0-16, where 16=MIDI rate)

 2 word len

 3 parity

 4 stop bits (not used)

 5 duplex

 6 xline

 7 xon char (0=incoming flow control disabled)

 8 xoff char (0=outgoing flow control disabled)

 9,10 input buffer pointer (page lo, hi)

 11,12 output buffer pointer (page lo, hi)

 13 high water mark (point at which xoff is xmitted)

 14 low water mark (point at which xon is xmitted)

For debug purposes, the border color will change if an RS232 buffer

overflow occurs. To differentiate between a GET# of a null and a

'no data' null, test bit 3 of STatus (same as C64).

* Support for latest DOS controller chip, F011D, includes error LED

 blink (border color still changes too, for now). Changes to

 improve FASTLOAD speed and improve SAVE speed. Will work with

 F011C chip, but error LED does not blink. Requires latest 'ELMER'

 PAL for disk LED to work correctly for either controller Chip.

 External drive LED will not work correctly until new PCB & F016

 chip are designed. New DOS functions include COPY D0 TO D1,

 ability to change sector skews for files (U0>S#) and directory

 (U0>D#), and directory compress (i.e., empty trash) via "E"

 command. Physical interleave is now 7.

* The DOS COPY/CONCAT bugs have been fixed, and COPY now allows

 forms such as COPY D0,"*.SRC" TO D1,"*" and COPY D0,"*=SEQ" TO D1,

 "*". Directory/partition paths not yet implemented, but will be.

The following changes/updates/fixes have been made to the C64DX ROM

code since the March 1, 1991 C64DX System Specification was printed.

Please make note of them. Current ROM as of this update is 910501.

CHAR Now works to spec. and supports the following imbedded

 control characters (although some are buggy; others are

 planned):

 ^F 6 flip

 ^I 9 invert

 ^O 15 overwrite

 ^R 18 reverse field on

 146 reverse field off

 ^U 21 underline

 ^Y 25 tilt

 ^Z 26 mirror

 When specifying a character set from ROM, note that

 national versions of the C64DX will have the national

 character set at $39000 and the C64 character set at

 $3DC00. In US/English systems, the default C64DX-mode

 character set will be at $39000.

CLR ERR$ Clears BASIC error stuff, useful after a TRAP.

CURSOR [<ON/OFF>,] [column] [,row] [,style]

 where: column,row = x,y logical screen position

 style = flashing (0) or solid (1)

 ON, OFF = to turn the cursor on or off

LINE x0, y0 [, [x1] [,y1]] ...

 where: (x1,y1)=(x0,y0) if not specified, drawing a dot.

 Additional coordinates (x2,y2), etc. draw a line

 from the previous point.

LOADIFF "file" [,U#,D#]

 Loads an IFF picture from disk. Requires a suitable graphic

 screen to be already opened (this may change). The file must

 contain std IFF data in PRG file type. IFF pics can be ported

 directly from Amiga (eg., using XMODEM). Returns 'File Data

 Error' if it finds data it does not like.

MOD (number, modulus)

 New function.

MOUSE ON [,[port] [,[sprite] [,[hotspot] [,X/Yposition]]]]

MOUSE OFF

 where: port = (1...3) for joyport 1, 2, or either (both)

 sprite = (0...7) sprite pointer

 hotspot = x, y offset in sprite, default 0,0

 position = normal, relative, or angular coordinates

 Defaults to sprite 0, port 2, last hotspot (0,0), and

 position. Kernel doesn't let hotspot leave the screen.

